
OFO

44=

UTILIZING BAYESIAN TECHNIQUES FOR

USER INTERFACE INTELLIGENCE

THESIS
Robert Allen Harrington

First Lieutenant

AFIT/GCS/ENG/96D-08I mTKL(~TG~J£'rATEMJW A

Appw1hibum Ut

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DIX. 4uA1-'T "v-.ui WD 1

AFIT/GCS/ENG/96D-08

UTILIZING BAYESIAN TECHNIQUES FOR

USER INTERFACE INTELLIGENCE

THESIS
Robert Allen Harrington

First Lieutenant

AFIT/GCS/ENG/96D-08

Approved for public release; distribution unlimited

The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U. S. Government.

AFIT/GCS/ENG/96D-08

UTILIZING BAYESIAN TECHNIQUES FOR USER INTERFACE

INTELLIGENCE

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Robert Allen Harrington, B.S.

First Lieutenant

December, 1996

Approved for public release; distribution unlimited

Acknowledgements

This research has been the most important part of my experience at the Air

Force Institute of Technology. I began with the common question "What is research",

and finished with a sincere understanding of the importance research holds for the

United States Air Force. I'm sure this experience will prove invaluable throughout

the remainder of my Air Force career.

I wish to extend a hearty thanks to Dr. Eugene Santos Jr. and Maj Sheila

Banks for their thoughtful questions and relentless press for success. Their encour-

agement and wisdom was paramount to my research success. I also want to thank

Dr. Thomas Hartrum for his time in reviewing my research documents and his in-

spiring teachings in software engineering. Yes Virginia, software engineering is an

engineering discipline.

A special thanks goes out to my fellow members of the PESKI research team:

Brett, Louise, Dan, Ed, and Scott. Their teamwork was the key in completing the

first version of PESKI. Also, I shouldn't forget to thank Chip, my trusty steed of

the information super-highway.

Finally, I'd like to extend a heartfelt thanks to my wife, Sherry, and my son,

David, for their support and patience. I recognize the hardships they have endured,

dealing with an overly busy husband and father. I couldn't have done it without you

both!

Robert Allen Harrington

ii

Table of Contents

Page

Acknowledgements. ii

List of Figures. vii

Abstract. viii

I. Introduction. 1-1

1.1 Problem Description. 1-1

1.2 Research Goals. 1-2

1.3 Scope 1-3

1.4 Thesis Overview 1-3

II. Background 2-1

2.1 Human-Computer Interaction (HCI). 2-1

2.1.1 The User. 2-1

2.1.2 The User Interface 2-2

2.2 Adaptable and Adaptive User Interfaces 2-5

2.3 The Intelligent User Interface 2-7

2.4 Knowledge Representation 2-9

III. Methodology. 3-1

3.1 Adopt a Target System. 3-1

3.2 Develop Interface Requirements. 3-1

3.3 Design the Interface. 3-2

3.4 Design the Intelligent Interface Agent 3-2

3.4.1 Develop the Semantics. 3-2

iii

Page

3.4.2 Design the Knowledge Representation 3-2

3.4.3 Develop a Learning Method 3-3

3.4.4 Develop an Inferencing Method 3-3

3.5 Implement and Integrate the Designs 3-3

3.6 Test the Integrated Intelligent User Interface 3-4

IV. Design of the Intelligent User Interface 4-1

4.1 Adopting the Target System 4-1

4.2 Developing Interface Requirements 4-1

4.2.1 General Interface Requirements 4-1

4.2.2 Examination of PESKI Tools 4-2

4.2.3 Study of Possible PESKI Users 4-2

4.2.4 Study of PESKI Communication Modes . . . 4-4

4.3 Designing the User Interface 4-5

4.4 Designing the Intelligent Interface Agent 4-8

4.4.1 Knowledge Representation 4-8

4.4.2 Domain Metric Collection Protocol 4-12

4.4.3 Identification of Network Performance Metrics 4-13

4.4.4 Storage Protocol 4-14

V. Implementation of the Intelligent User Interface 5-1

5.1 Implementation of the Interface 5-1

5.2 Implementation of the IIA 5-2

5.3 System Integration 5-2

5.4 Communication Between the IIA and the Interface . . 5-3

VI. Testing the IIA 6-1

6.1 Mathematical Soundness Testing 6-1

6.1.1 Computational Accuracy: Simple Case 6-1

iv

Page

6.1.2 Computational Accuracy: Complex Case . . . 6-4

6.2 Usability Testing 6-6

6.2.1 Physical Work Requirements 6-6

6.2.2 Acceptance of the IIA 6-7

6.2.3 Responsiveness of the IIA 6-8

6.2.4 Accuracy of the User Model 6-9

VII. Results and Conclusions 7-1

7.1 Accomplishment of Research Goals 7-1

7.1.1 Modeling User Intent 7-1

7.1.2 Complexity Abstraction 7-1

7.1.3 Maintenance of Generic Nature 7-2

7.1.4 Viability of Bayesian Interface Intelligence . . 7-2

7.2 Strengths of the Research 7-2

7.2.1 Mathematical Accuracy for Capturing Uncer-

tainty 7-2

7.2.2 Adaptability 7-3

7.2.3 Foundation for Bayesian-Based Interface Intelli-

gence 7-3

7.3 Weaknesses of the Research 7-3

7.3.1 Computational Barriers 7-3

7.3.2 Verification of User Intent Models 7-4

7.3.3 Overlooking of Key Indicators 7-4

7.3.4 Additions to Methodology 7-4

VIII. Further Research 8-1

8.1 Development of an Interface Intelligence Language . . 8-1

8.2 Meta-Levels of Interface Learning 8-2

8.3 Computational Efficiency 8-2

v

Page

8.4 Refinement of the PESKI User Interface 8-3

8.5 Connections Between Network and Cognitive Models 8-3

8.6 Development of a Generic Methodology for Interface In-

telligence Research 8-4

8.6.1 Additions to Requirements Development Method-

ology 8-4

8.6.2 Additions to Intelligence Design Methodology 8-5

8.6.3 Additions to Testing Methodology 8-6

Bibliography BIB-1

Appendix A. Basic Instructions for Application Access A-1

A.1 Access to PESKI A-1

A.2 Access to daVinci A-1

A.3 Access to Netscape A-1

Appendix B. Physical Work Requirements B-1

Appendix C. Survey Used for User Acceptance Testing C-1

Appendix D. User Acceptance of the IIA D-1

Appendix E. Responsiveness of the IIA E-1

Vita VITA-1

vi

List of Figures
Figure Page

4.1. The Layered Interface Architecture 4-6

4.2. The Interface Architecture Static Model 4-7

4.3. The IIA Static Model 4-9

4.4. Network Design for the PESKI IIA 4-11

6.1. Computational Accuracy: Simple Case Example 6-2

6.2. Computational Accuracy: Complex Case Example 6-5

6.3. Overcoming Evidence to Adapt Single Focus Case 6-10

6.4. Overcoming Evidence to Adapt Double Suggestion Case..... 6-11

6.5. Overcoming Evidence to Adapt Triple Suggestion Case 6-12

vii

AFIT/GCS/ENG/96D-08

Abstract

Software systems are becoming increasingly complex, so complex that ordinary

users are often overwhelmed by windows, buttons, menus, and a multitude of sys-

tem functions. In order to keep software systems usable, we must begin to abstract

the complexity of these systems away from the user, in other words, make the com-

plexity of software systems transparent to the user. This abstraction must occur

within a system's human-computer interaction, so the responsibility for providing

this abstraction falls on the software system's user interface.

The purpose of this research is to study the injection of an intelligent agent

into modern user interface technology. This agent is intended to manage the complex

interactions between the software system and the user, thus making the complexities

transparent to the user. The background study will show that while interesting

and promising research exists in the domain of intelligent interface agents, very

little research has been published that indicates true success in representing the

uncertainty involved in predicting user intent.

The interface agent architecture presented in this thesis will offer one solution

for solving the problem using a newly developed Bayesian-based agent called the

Intelligent Interface Agent (IIA). The proof of concept of this architecture has been

implemented in an actual expert system, and this thesis presents the results of the

implementation. The conclusions of this thesis will show the viability of this new

agent architecture, as well as promising future research in examination of cognitive

models, development of an intelligent interface agent interaction language, expansion

of meta-level interface learning, and refinement of the PESKI user interface.

viii

UTILIZING BAYESIAN TECHNIQUES FOR USER INTERFACE

INTELLIGENCE

I. Introduction

1.1 Problem Description

Software systems are becoming increasingly complex, much to the chagrin of

system users. System developers and researchers have turned to improving the

human-computer interaction of software systems to reduce the complexity faced by

users and make systems more usable. One of the latest areas of study into improved

human-computer interaction is the study of integrating intelligent agents into mod-

ern user interface technology. It has been hypothesized that this intelligence can be

used to provide complexity abstraction and interface adaptation in order to make the

user interface, and thus the software system, more usable to the system user. How-

ever, researchers have failed to find a proven architecture for interface intelligence

agents that can be widely adopted to today's user interface technology.

This problem is observed more acutely in the arena of expert systems. Tra-

ditionally, designers of expert systems (computer systems that imitate human rea-

soning and knowledge) have placed little or no emphasis on the expert system user

interface. These developers spend most resources perfecting the functionality of the

expert system, leaving few resources available to design and implement the user

interface and enhance the user's ability to utilize the system. Therefore, expert

systems of the past are known for their inflexible, non-user friendly formats that

are designed around the expert system's domain rather that the user's needs. This

has begun to change as expert systems become more widely used among common

computing systems, forcing interface design issues into the development spotlight.

1-1

The need for more dynamic, user-oriented expert system interfaces becomes

even more crucial with the development of generic expert systems, systems that can

be used in and adapt to many domains, such as EDWARD [19], OPADE [23], and

PESKI [75]. This type of expert system is available to a wide variety of users with a

wide variety of preferences and needs. The user interface for a generic expert system

must be the catalyst for handling a variety of user types and must employ a level of

intelligence to manage the users' preferences and needs. The creation of an effective,

intelligent user interface can support an expert system's performance throughout a

myriad of application domains and is crucial to user acceptance of the system as a

useful, cost-effective tool.

Exploration of interface intelligence is vital to United States technological goals

as well. The High Performance Computing, Communications, and Information Tech-

nology Subcommittee (HPCCIT), tasked by the President with advancing the United

States technological advantage, places emphasis on user interface research as the

catalyst for handling complex human-computer interaction for many of the National

Challenge applications [5, 3, 6, 2]. In fact, the HPCC FY 1994 Blue Book directly

names intelligent user interfaces as one of a three-part technology base for meeting

National Challenges [1].

1.2 Research Goals

The four goals for this research address the problem description discussed in

Section 1.1. All work performed for this research is oriented toward meeting these

goals:

1-2

1. To develop an interface intelligence agent architecture that accurately captures

and models user intent.

2. To develop an interface intelligence agent architecture that abstracts the com-

plexity of an expert system away from the user.

3. To develop an intelligent user interface that may be applied across many do-

mains while maintaining the generic nature of a generic expert system.

4. To show the viability and usefulness of Bayesian techniques for interface intel-

ligence.

1.3 Scope

The study of user interface intelligence spans a wide variety of disciplines, as

will be presented in Chapter II. Therefore, the scope of this thesis is to study the

application of Bayesian theories and practices to develop a new, more effective agent

architecture called the Intelligent Interface Agent (IIA) [21]. The proof of concept of

this architecture is executed in a designed and implemented user interface supporting

the generic expert system PESKI (Probabilities, Expert Systems, Knowledge, and

Inference) [75, 13, 35, 36, 37]. The IIA uses a probabilistic network that stores user

behavior collected from the interface's human-computer interaction. The IIA also

employs a reasoning mechanism that uses the stored probabilities to make decisions

on future user intent. Other user interface architectures and issues involving cognitive

science concerns are presented in Chapter II and Chapter VIII, but they are not the

primary focus of this research.

1.4 Thesis Overview

Chapter II of this thesis discusses the wide variety of research areas that make

up the study of user interface intelligence. Chapter III explains the methodology

used to carry out this intelligent interface agent research. Chapter IV explains the

design process used to develop interface intelligence. Chapter V outlines how the

1-3

designs were implemented, pointing out important implementation decisions and

tradeoffs. Chapter VI of this thesis features the test cases and test results of the

newly implemented IIA. Chapter VII of the thesis presents an interpretation of

the test results and the conclusions posed by this research. Finally, Chapter VIII

describes several interesting and promising future research areas that are spawned

from the conclusions of this research.

1-4

II. Background

The study of intelligent user interfaces is the focus of knowledge from many var-

ied areas of science, having roots in computer science, psychology, and human factors

engineering [76, 12]. Human-computer interaction (HCI) research, which combines

knowledge from all three areas, supports the study of adaptable and adaptive user

interfaces. The merger of adaptive user interface research and artificial intelligence

knowledge representations, such as Bayesian networks, sets the stage for intelligent

user interface research. This chapter traces the history of interface intelligence and

provides a foundation that supports the development of this research.

2.1 Human-Computer Interaction (HCI)

The last fifteen years of computer development have brought about a focus

on HCI research [29]. Numerous journal publications, conferences, and books are

dedicated to the advancement of HCI research, all searching for better ways for

computers to interact with humans. In order to understand HCI better, we must

first understand the user and the interface.

2.1.1 The User. A good researcher must understand users in order to

study user interfaces. Cox explains there are many characteristics to the typical user

including frequency of use, application knowledge, tasks to be performed, assumed

skills, and attitudes [29]. There are also many human factors relating to computers

that can be measured. These include time to learn the system, speed of task per-

formance, rate of errors, retention of system knowledge over time, and satisfaction

[76].

Researchers continually attempt to categorize users into general user classes

[84, 76, 45, 86]. Trumbly asserts that user performance is improved when the inter-

face characteristics match the user skill level. Some user categories include novice,

2-1

knowledgeable intermittent user, and expert. Novices usually know little about their

tasks and have poor computer skills. They tend to prefer menus that require very

little of the user's short term memory to use. Knowledgeable intermittent users usu-

ally know something about the tasks and have some computer skills. This type of

user may prefer either menus, keyboard commands, or a mixture of both. Experts

are very familiar with their tasks and have a high degree of computer skills. These

experts generally prefer keyboard commands so that they may perform tasks more

quickly.

2.1.2 The User Interface. One of the most important components of

today's modern computing systems is the user interface. The user interface is the

communication link between the system user and the functionality of the system [62].

A user interface does not have to be graphical in nature, although many modern

interfaces rely heavily on graphical representation [76, 29]. Donskoy defines the user

interface as a set of objects that are affected by user and system events [30]. Since

all of the user's interaction with the computing system is with the user interface, the

interface plays a vital role on the user's opinion of the system as a whole [34, 89].

Cox suggests there are four main characteristics of a good user interface: user

control, transparency, flexibility, and learnability [29]. He goes on to state that

some general design principles that lead to a good user interface are consistency,

keeping the user in control, easy reversal of adaptations, and user modifiability.

Schniederman suggest dialogue between humans and computers must be consistent,

allow for shortcuts, allow feedback, and ensure the user knows when a dialogue is

done [76].

Unfortunately, the user interfaces of today's systems have become increasingly

complex. Woods suggests that the data overload humans exhibit introduces new

kinds of errors into system use, errors that are born out of having too many choices

2-2

and too much data [89]. Ways must be found to reduce the complexity of user

interfaces and avoid these errors.

There are many different ways a user interface can communicate with the user

[45]. These methods fall into three general categories: language, graphical, and

multimodal [19, 76].

2.1.2.1 Language Communication. Language communication in-

cludes textual and natural language conveyance of information and deals effectively

with abstract ideas and concepts [39, 9, 77]. Textual language communication is a

simple, static method in which the interface can respond to specific textual inputs.

Natural language broadens the interface's ability to understand textual input by

allowing the input to be typed in a real language, such as English. However, cur-

rent language systems are very restricted, offering only limited capability, and may

require lots of typing to express ideas. Further, natural language technology faces

numerous barriers to offering practical natural language capabilities.

2.1.2.2 Graphical Communication. Graphical communication in-

volves the viewing and manipulation of physical objects and is ideal for concrete

tasks and procedures. One of graphics downfalls is interpretation, since graphical

symbols can mean different things to different people. Also, implementation can be

a problem for graphics since they are very resource intensive [62, 76].

The graphical user interface (GUI) utilizes graphical communication to con-

vey information to the user in abstract ways for easier comprehension [14, 25, 88].

The most important element of making this type of user interface effective is pro-

viding a representation that has the proper semantics and syntax. Unfortunately,

these graphical representations can often have the downfall of being inflexible, since

the representations are statically defined when the interface is first designed and

implemented.

2-3

Windowing systems are currently the most popular way for systems to repre-

sent information graphically. Among these windowing system, the X Window Sys-

tem, normally called X, stands out as a popular choice, mainly due to its portability

to systems such as UNIX, MS-DOS, Windows NT, SUN/XView, and OpenVMS

[88, 50]. Bernstein describes the X as "a protocol that is exchanged between two

processes; a client(typically an end user application) and an X server that drives the

keyboard/mouse devises and renders images on the screen" [17]. As a standard pro-

tocol, window toolkits use X to create an environment of graphical objects, called

widgets, such as windows, buttons, and icons. There are many available toolk-

its that can be applied to the X Window System, such as Athena, OLIT, OPEN

LOOK, DECwindows, and OSF/Motif, and each toolkit has its own look and feel.

The Motif toolkit has emerged as a very popular set of widgets to implement a

GUI. Motif is made up of widgets written in the C and C++ programming languages,

and the Open Software Foundation specifies the look and feel of Motif to ensure the

toolkit is maintained as a standard. Motif is the most popular toolkit because of its

adherence to modern object-oriented standards of software development and its ease

of implementation [88, 72, 55].

Graphical elements, such as icons, provide a way to abstract representations for

improved communication with the system user [14]. Icons must be designed and used

very carefully since they can be misinterpreted. Use of icons can lead to creation

of direct manipulation systems [27]. These systems allow the user to manipulate

icon images, mimicking the actual manipulation of the real world. For example, a

car designer can match hubcaps to a newly designed car by moving different hubcap

icons onto a graphical representation of the car. Graphical manipulation systems

can be very easy for users to learn and use.

2.1.2.3 Multimodal Communication. When an interface has commu-

nication methods that come from both areas, language and graphical, and it offers

2-4

a user the choice between its methods of communication, it is known as a multi-

modal interface [19, 65, 27, 77]. Such interfaces as AlFresco [78, 79] provide rich

interaction environments for the user. In fact, Neilson suggests that a combination

of language and graphical communication may actually be more effective in concert

than separate [62].

2.2 Adaptable and Adaptive User Interfaces

Research concerning intelligent user interfaces began in the late 1980's with

the examination of adaptable user interfaces. Adaptable user interfaces include mul-

timodal interfaces and interfaces that allow users to modify specific elements of the

interface's operations and appearance [48, 67]. Systems that support user controlled

multimodalty such as GUIDE [48], EDWARD [19], and AlFresco [78, 79] allow great

flexibility to the user while offering access to the software system's complex func-

tions. For example, AlFresco (an art evaluation tool) allows the user the choice to

communicate with the software system through menus or through on-screen, mouse

pointer cues using multimedia pictures of real art objects. The adaptable nature of

this interface allows AlFresco users to control the interface to meet their personal

needs and desires.

Unfortunately, many user interface adaptations are very static in nature, being

designed by the interface designer when the interface is created [15, 51]. These

adaptations may also require a certain level of expertise or interactive help just to

enact. Due to these restrictions, the resulting adaptations are limited in scope and

usefulness to the user [48, 19, 78, 86].

Interface adaptation research led to the development of adaptive user interfaces

that adapt themselves based on perceived user behavior [82, 15, 51, 45]. Maulsby

describes user behavior as "actions that might be performed in one situation but

not another" [58]. This act of behavior prediction is also known as plan recognition

[87, 46, 10].

2-5

Trumbly states that "Adaptive systems can't adapt to every user perfectly

but can adapt enough to improve the quality of the human-computer interaction"

[84]. Trumbly goes on to point out Valery Venda's law of mutual adaptation, where

"the performance of a task is best when the capabilities of the computer match

the cognitive skill structures and behavior strategies of the human user" [84]. These

systems must collect data about the application, the system user, and the application

domain in order to have enough information to make intelligent decisions. Opperman

suggests that systems must be able to adapt themselves to the user based on metrics

such as errors, characteristics, performance, and goals [67].

The decisions made by these systems must be collaborative [82, 15, 11, 51, 16,

61]. The adaptive interface proposes the adaptation, presents evidence to support the

need for the adaptation, and the user accepts or rejects the suggestion [67, 60, 66, 49].

Ruckert asserts humans should be able to discuss results with a knowledge-based

decision support system [71]. However, this collaboration must never detract the

user from the actual application at hand and must, in the end, provide a cost benefit

to the user [82, 19, 81]. Miller wrote about this interaction from the computer to

the user, saying "Justification builds trust" [60]. Once the adaptation is complete,

the system should give the user an overview of the adaptation and the ability for the

user to reverse it [67, 82, 85].

There are many behaviors that can be exhibited by an adaptive user interface

[45, 16]. They include reorganizing menus and dialogue boxes, streamlining task

procedures, enabling and disabling interface widgets, and providing help [80, 44, 51].

Adaptive interfaces, such as Flexcel [67], Retail User Assistant [59], and UIMS [44]

collect metrics about the user while the user employs the system and then applies

those metrics to make decisions about desirable changes to itself.

Flexcel stores knowledge about the user in a series of If-Then rules. Flexcel

tracks error rates, adaptation preferences, and thresholds for initiating rules. For

example, when a threshold is met for too many errors while doing a particular task,

2-6

a dialogue is presented to the user suggesting how that user can prevent the same

error in the future. If an adaptation is presented to solve the problem, the user

can indicate acceptance of the adaptation and Flexcel will perform it [67]. Retail

User Assistant (RUA) also collects data about the user and adapts itself based on the

learned knowledge being applied to a rule-base. RUA is a multimedia package used in

computerized cash registers that provides video directions on how to perform register

operations. The system starts by giving basic instructions to new employees and, as

a particular employee gets better at operating the register, automatically eliminates

cues on operations that the employee has mastered [59]. UIMS is a multimodal

interface manager that alters its modes of communication based on a dynamic set

of metrics collected from each systems user [44].

It is very difficult to measure the success of an adaptation. Kuhme writes,

"There is yet no generalized metric for a systematic, system-built-in evaluation of

a performed adaptation" [51]. He even goes on to suggest that most adaptive user

interfaces do not meet the needs of the user. In general, adaptive interfaces are

observed to be helpful and productive in numerous application areas, but many

users are still uncomfortable with the idea of automated computer system control

[67]. Woods suggests that the user can think of a totally autonomous agent as

a type of crutch, treating the user like they don't know what they're doing [89].

Unfortunately, many adaptive interfaces, such as ChEM [11], are also very inflexible

since they are only designed for specific applications.

2.3 The Intelligent User Interface

The intelligent user interface is an attempt to overcome some of the shortfalls

inherent in adaptive interface technology by adopting a more sophisticated intelli-

gence. Woods describes an intelligent interface as an "autonomous, animate com-

puter agent" or "smart instrument" and states that it can also be characterized as

an agent that can help the user deal with state changes of the application [89]. The

2-7

idea of developing a cooperative user interface, or intelligent assistant [57], repre-

sents a compromise between improving user interface management of complex tasks

and allowing users to stay in control [24, 12, 61]. An intelligent assistant will col-

lect metrics about the system's use and look for areas where adaptations can occur.

When target adaptations are identified, the interface notifies the user and asks for

permission to make the target adaptation. It is important to note that this method

of consulting with the user before making an adaptation must not distract the user

from the user's task.

A sophisticated intelligent assistant assists the user with performing tasks by

allowing the user to ask for tasks in an abstract way, leaving the assistant to perform

the details [49, 24]. Chappel wrote, "Many intelligent interfaces include knowledge of

the application task, user and context for pragmatic planning and natural language

use." [25]. Woods claims designers of intelligent interfaces should tread cautiously

to avoid creating new examples of clumsy automation [89].

Puerta suggests there are three major functions that are performed by an in-

telligent user interface: knowledge-based interaction, self-adaptation, and automatic

generation [69]. Knowledge-based interaction deals specifically with performing more

intelligent communication with the user. Self adaptation involves the intelligent in-

terface improving its own performance based on perceived and stored behavior. Au-

tomatic generation takes place when the interface uses its existing knowledge base

to generate an interface that is particular to the current state of the knowledge base.

Chappel describes a system called MMI2 (Multi-Modal Interface for Man Ma-

chine Interaction with a Knowledge Base) [25]. This interface uses statistical knowl-

edge about users, applications, tasks, and dialogue context to create natural language

dialogues and graphical responses for a computer network design tool. This system

can use its knowledge to chose an appropriate graph to represent information that

the user wants to display, such as displaying the cost of all computer hardware in a

newly designed computer network. MMI2 uses a static knowledge base and Chap-

2-8

pel concludes, "Clearly the ideal would be to incorporate perceptual and cognitive

models that would be used to simulate the user and show the understanding gained

from a presentation and any false inferences and implicates drawn" [25].

Current intelligent user interface research has found new energy with the study

of intelligent agents. An intelligent agent is characterized as a computer entity that

collaborates with and helps a user [12, 61]. Hayes-Roth describes the roles of an

intelligent agent as "perception of dynamic conditions in the environment; action to

affect conditions in the environment; and reasoning to interpret perceptions, solve

problems, draw inferences, and determine actions" [42]. These roles match the previ-

ously discussed roles of today's intelligent user interfaces. Intelligent agent research

is useful to intelligent user interface research because it supports creating compact,

portable intelligence that is independent of a particular application interface. This

idea of a generic interface intelligence pushes the limits of intelligent interface re-

search.

2.4 Knowledge Representation

Intelligent user interface research is very focused on human-computer inter-

face issues, concerned mainly with the abilities and usability of intelligent interfaces.

However, intelligent interface research has put little emphasis on improving the struc-

tures that represent the intelligence of these interfaces. Most research interfaces use

static, rule-based intelligence structures rather than exploring more dynamic repre-

sentations [34, 56, 25, 82].

It is widely agreed that basing decisions on accurate cognitive models of the

user is important for accurate prediction of user intent [25, 82, 67, 84, 89]. It has also

been supported that the interface should be able to collect and model information

about false inferences. Many agree collecting such data is extremely difficult for

reasons of computational efficiency and cognitive modeling [44, 51].

2-9

The problem is that most intelligent user interfaces that use rule-based repre-

sentations fail to correctly represent uncertainty [67, 59, 44]. Therefore, knowledge

representations that can capture and model uncertainty in human-computer interac-

tion can improve the modeling of the user and the user interface's behavior [44, 51].

One knowledge representation that is ideal for representing uncertainty is a Bayesian

Network(BN).

A BN is a mathematically correct model for representing uncertainty that

shows probabilistic relationships between items [8, 43, 26, 68]. Formally, a BN is

a directed acyclic graph where each node represents a random variable of interest,

and edges represent direct correlations between the variables [20]. Burnell writes,

"Belief networks, also known as Bayesian belief networks or probabilistic influence

diagrams, are a flexible and powerful approach to representing uncertain knowledge"

[22].

The topology of a BN consists of nodes and arcs [26]. The nodes of a BN rep-

resent random variables, or states of affairs. The arcs of a BN represent relationships

between the nodes [63]. Since a BN is a directed graph, the nodes are unidirectional

and the direction represents dependency. A node that has no dependencies is known

as a root node, and a root node contains probabilities for the states of the node, usu-

ally true and false. A node that is not a root node contains conditional probabilities

that are derived from all possible combinations of its descendent nodes.

The conditional probabilities of non-root nodes represent a degree of belief

[43, 26]. Beliefs can be represented by probabilities, defining the likelihood an event

will occur. A probability of 1.0 indicates certainty that the belief is certainly true,

and a probability of 0.0 indicates that the belief is certainly false. Any probability

between 0.0 and 1.0 represents a degree of uncertainty that the belief is true or false

[52, 9]. Because of this fact, probability theory is considered one of the strongest

ways to represent uncertainty [63].

2-10

Inferencing in a BN is the act of deriving probabilities from the data in the

network [68]. There are two main types of inferencing associated with BNs: belief

revision and belief updating. Belief revision derives probabilities of all the nodes in

the network, often referred to as the state of the world. Belief updating derives the

probabilities of one particular node of the network.

BNs also allow for an easy way to designate conditional probabilities, nor-

mally represented by conditional probability tables (CPTs) [20]. While these CPTS

are exponential in nature, they provide a basic way codify conditional probabili-

ties [31]. Unfortunately, the exponential nature of CPTs are a significant problem

when implemented computationally. In fact, computing a BN is NP-hard, and this

computational problem is the largest barrier against widespread use of BNs [26].

BNs have the property that they support reasoning for many types of problems

including medical diagnosis, map learning, language understanding, and vision [26,

22, 8]. Nicholson writes about the usefulness of BNs for collecting events from real

world sensors, such as a light sensor, in order to create a probabilistic model of the

real world. This model can be used in areas such as robotics to aid in machine

decisions about the real world [64].

Bayesian techniques offer attractive properties for developing interface intelli-

gence. They provide an excellent ability to capture uncertainty, something inherent

in modeling human intent. Also, Bayesian techniques are extremely useful for pre-

dicting future events. Finally, these techniques are useful in expressing qualitative

relationships (causalities) among beliefs and to process these relationships in a way

that yields intuitively plausible conclusions [68].

2-11

III. Methodology

Development of a user interface agent for this thesis follows a six phase process:

adopt a target system, develop interface requirements, design the interface, design

the intelligent agent, implement and integrate the designs, and test the intelligent

agent's effects on the target system [55, 29, 76].

3.1 Adopt a Target System

The first step in developing interface intelligence for this research is to identify

a system that needs intelligence in its interface. Systems that need interface intel-

ligence might include very complex systems, systems that require a very dynamic

collaboration with the user, and systems that must adapt to varying application

domains. Further, it is desirable to target a system that already has an acceptable,

working user interface. This avoids the effort necessary to design and implement

the user interface and allows the researcher to focus only on the intelligent agent.

It can be argued that intelligent interface research can be accomplished with a sim-

ulated target system rather than a real system. However, development of interface

intelligence for a real system lends credence to the research by exposing real world

performance and usability issues of the interface

3.2 Develop Interface Requirements

Once a target system is identified, the system design, the application domain,

and the potential domain users must be analyzed to develop interface requirements.

These requirements should focus on user needs and be tempered by target system ca-

pabilities [55]. A comparison of tradeoffs may be necessary to find the right balance.

Intelligent interface requirements are then decomposed into specific requirements

for both the physical user interface and the intelligent agent. This decomposition

facilitate the mapping of requirements during the design phases.

3-1

3.3 Design the Interface

Once requirements for the physical interface are derived, those requirements

are transformed into an interface design. This design begins with storyboarding, a

visual interface rapid prototyping technique that shows what the interface will look

like and how it will react to events [29, 53, 54]. Approved storyboards are transformed

into object-oriented models [72, 40]. These models provide abstract representations

of the interface objects and events for easier implementation into operational code.

3.4 Design the Intelligent Interface Agent

The requirements for the intelligent agent, along with the design of the physical

user interface, are used to design an intelligent interface agent. This agent archi-

tecture is developed to both mathematically and semantically meet the intelligence

requirements. This architecture must also allow efficient communication with the

physical interface and meet usability standards. The design of the candidate intelli-

gence structure can be characterized in four steps: develop the semantics, design the

knowledge representation, develop a learning method, and develop an inferencing

method.

3.4.1 Develop the Semantics. First, the semantics are developed based on

intelligence requirements. These requirements are used to discover interactions be-

tween the user and the application domain that requires intelligent intervention. The

semantics should capture relationships between the relevant elements and describe

how the elements interact.

3.4.2 Design the Knowledge Representation. Second, a knowledge rep-

resentation topology is designed that supports the semantics. This representation

should clearly mirror the relationships and interactions of the relevant elements.

Further, this representation should be implementable and computationally efficient.

3-2

3.4.3 Develop a Learning Method. Third, a learning method is designed.

This method should ensure totally transparent elicitation of knowledge from the user

and the application domain. The learning should correctly transfer knowledge from

the domain, translate the knowledge into the representation, and store the knowledge

efficiently. The computational efficiency of this processes is a key element to ensuring

learning transparency.

3.4.4 Develop an Inferencing Method. Fourth, an inferencing method is

designed to support knowledge elicitation from the representation. This inferencing

method must be able to access the relevant knowledge in a computationally efficient

manner, on demand, and must retrieve the knowledge in a way that ensures the

returned knowledge is correct.

3.5 Implement and Integrate the Designs

The final designs of the physical interface and the intelligent agent are then im-

plemented into programming code. The choice of computing platform and language

should be based on requirements such as the target system hardware and software

environments. This implementation is a stepwise process of software implementa-

tion and software testing [47]. Coding accuracy is checked by developing and running

tests that exercise all aspects of the implemented software.

Once the physical interface and the intelligent agent are implemented and

tested, a process of system integration begins. This process starts by integrating the

interface and the agent into an intelligent user interface. Once software testing is

performed on the intelligent user interface, the interface is integrated with the target

system.

3-3

3.6 Test the Integrated Intelligent User Interface

Finally, the interface intelligence is tested to determine its ability to meet the

requirements [83]. Test case design focuses on exercising the agent's mathematical

accuracy and usability. Enough test cases must be performed to examine all areas

of performance. Testing for mathematical correctness is accomplished by comparing

the results of hand-computed calculations with actual intelligent interface results for

a particular test case. These test cases are designed using a foundation of accepted

mathematical formulas and constructs. Usability testing is performed with standard

time/step analysis and user feedback sessions. Together, the results of these tests

will give an indication whether the research goals are met.

3-4

IV. Design of the Intelligent User Interface

4.1 Adopting the Target System

As mentioned in Chapter 1, PESKI is chosen as the target system to develop

the interface intelligence. PESKI is a collection of expert system tools that form

a generic expert system, able to provide reasoning and decision support capabili-

ties independent of any application domain [75, 13]. At the start of this research,

PESKI did not have a user interface nor a system architecture that binds the expert

system tools. An incomplete system provides some difficulties in developing inter-

face intelligence because of the potential resources needed to create an interface and

complete the system architecture. However, this generic expert system possesses the

complexity and requirements for dynamic human-computer collaboration ideal for

incorporation of interface intelligence.

4.2 Developing Interface Requirements

Requirements for the PESKI user interface include inputs from interviews with

the lead PESKI researcher, an examination of expert system tools to be integrated

under PESKI, a study of possible PESKI users, and a study of communication modes

that meet the needs of the targeted users.

4.2.1 General Interface Requirements. Interviews with the lead PESKI

researcher uncovered three main requirements for the PESKI user interface. First,

the interface must be generic, not tied to any particular application domain. Second,

the PESKI interface must be flexible to all manners of user preferences and abilities

since it is a system that is intended for all types of users, from novices to experts.

Since PESKI does not have a system architecture, the third main requirement is to

provide the architecture. The ideal situation is to design and implement a system

architecture separate from the interface, but applying research resources to the de-

4-1

velopment of a separate architecture was unrealistic. Therefore, the user interface is

also required to be the PESKI system architecture.

4.2.2 Examination of PESKI Tools. As mentioned earlier in this thesis,

PESKI is a generic expert system, designed to provide users from a multitude of

application domains with decision support capabilities. To do this, PESKI offers

various independent tools that, when combined under one system, provide the re-

quired functionality. All these tools share one thing in common: they all utilize and

support a new knowledge representation called a Bayesian Knowledge Base (BKB)

[75, 13].

There are six basic tools that support PESKI's knowledge representation [18,

33, 74]. The knowledge acquisition (KA) tool is primarily responsible for putting

knowledge into the BKB. The edit supports (ES) tool supplements the knowledge

acquisition tool. The inference tool (IE) is responsible for extracting knowledge from

the BKB. The verification and validation (VV) tool is responsible for discovering

incomplete or contradictory information in the BKB. The data mining (DM) tool is

used to extract information from outside sources for use in the BKB. Finally, the

knowledge base viewing (KV) tool is necessary for realizing more abstract ways of

viewing BKBs.

4.2.3 Study of Possible PESKI Users. The study of possible PESKI users

is important to the success of the entire system. After all, a computer system is

useless if the user does not perceive the system as a convenient tool to get useful

work done. Furthermore, if the system's interface is developed without a focus on

user needs, the system may prove to be difficult to operate and be promptly labeled

worthless.

It is sometimes difficult to develop a system that consistently and accurately

predicts user needs in a generic environment. For example, new user needs are

extremely difficult to predict since the interface has no past behavior on which to

4-2

base predictions. Therefore, we must attempt to classify general groups of users

and develop user profiles for each group. Although it is very difficult to put users

into specific classifications [73], doing so will narrow down the requirements of the

interface to a manageable level. With this in mind, a general purpose expert system,

such as PESKI, is assumed to have four general types of users: application users,

application experts, knowledge engineers, and computer scientists.

The application user employs the expert system "on-the-job." This user is not

necessarily an expert in the application domain nor is this user necessarily knowl-

edgeable in the inner workings of an expert system. This user simply needs the

ability to query the expert system for the appropriate knowledge to get useful work

done.

An application expert is extremely knowledgeable in the field where the appli-

cation is being used. For example, an application expert is a doctor in a hospital.

This user is not necessarily knowledgeable in expert systems, but may wish to use the

system to query for some required knowledge. Since application experts are experts

in their domain, these users may also be responsible for providing new knowledge to

the existing system.

A knowledge engineer is a person who specializes in acquiring knowledge, usu-

ally from humans. This user acts as an intermediary between experts and the com-

puter, able to break knowledge down into its most basic forms for entry into the

expert system. This user needs a more detailed view of the knowledge base than

the application expert or the application user. The knowledge engineer also needs

to view and analyze the structure of the knowledge in the knowledge base to ensure

that the knowledge is being built correctly.

The computer scientist is also an important user to consider for an expert sys-

tem interface. This user is interested in development, design, and maintenance of the

expert system and needs the lowest or no amount of abstraction. The user interface

must allow the computer scientist to directly manipulate knowledge base structures,

4-3

to examine knowledge interactions, and discover how to improve knowledge struc-

turing techniques.

The users of PESKI may fall within more than one of these general categories.

For example, a civil engineer can use the expert system to design a building's founda-

tion but can also add new information concerning building design to the knowledge

base. Therefore, the civil engineer is an application user and an application expert.

The interface must allow users who maintain multiple roles the ability to switch

between the needs of the various roles while using the system.

Not only are there general classifications of PESKI users but there are various

skill levels in computer knowledge among individuals of various groups. A widely

accepted scale of computer knowledge is low, medium, and high [84]. This computer

knowledge can range from general knowledge to specific knowledge in particular

applications. For example, a user that is very knowledgeable about particular word

processing systems may have no idea how operating systems work.

4.2.4 Study of PESKI Communication Modes. Three communication

modes are proposed for this interface to meet the needs of the previously mentioned

users: natural language, graphical manipulation, and structured text. The user inter-

face should provide easy access to all three communication forms and should assist

the user with choosing the appropriate communication form for each application or

tool [19].

The natural language interpreter(NLI) allows the user to communicate with

the expert system through typed sentences of English text [39, 9]. For example, a

doctor can create a relationship between "polio" and "disease" in the knowledge base

by typing "Polio is a disease" onto a text line. The interpreter breaks the sentence

into its most basic forms, translates the forms into a relationship, and sends the

update request to PESKI's knowledge acquisition tool.

4-4

The graphical interpreter allows the user to build graphical relationships that

can later be manipulated to communicate relations [11]. For example, an icon that

represents "polio" can be moved, using a mouse, from a pool of icons to a window that

represents "diseases." The graphical communicator interprets the move as creating

a relationship between polio and disease and sends the update request to PESKI's

knowledge acquisition tool.

The structured text interpreter allows the user to build pre-defined textual rela-

tions that, when receiving text, create the desired relation. Again, if "polio" needs to

be associated with "disease," then a text entry box is created labeled "disease." The

user can then type "polio" in the box and the structured text interpreter creates the

relationship and sends the update request to PESKI's knowledge acquisition tool.

4.3 Designing the User Interface

The interface architecture developed from the requirements is a layered archi-

tecture that contains three main layers: the graphical layer, the system layer, and the

IIA layer(see Figure 4.1) [38]. The graphical layer provides the graphical interface

environment, or cosmetics, for the communication with the user, and is responsible

for managing the graphical user interface. Due to the event driven nature of the

modern graphical user interface and the lack of a PESKI system architecture, the

graphical layer is also deemed responsible for overall system control. The system

layer provides a coupling between the expert system's tools and the user interface.

The IIA layer manages the interface intelligence, communicates with the graphical

user interface, communicates with the system layer, and manages the communication

modes.

Each of these three main layers of the interface architecture are represented

by object classes. The HA layer is discussed later in this thesis. The system layer

is designed to support all the main expert system tools except knowledge viewing.

Driver classes are designed in the system layer to support each of these functionalities

4-5

USER

Graphical Layer

IIA Layer System Layer

Drive vr Drer Drie Dver Driver

NLI KV EE KA ES VV DM
Tool Tool Tool Tool TOO Tool Too

Bayesian Knowledge
Base (BKB)

Figure 4.1 The Layered Interface Architecture. An illustration that shows
the layered architecture of the interface along with the system and com-
munication tools that interact with the layers.

and are the direct line of communication between the user interface and the system

tools.

The initial graphical layer designs are performed through storyboards [29, 53,

54]. These storyboards are drawings of interface screens used to prototype the look

and feel of the proposed user interface. User reviews are performed to evaluate

the prototypes and normalize toward a user interface that supports the interface

requirements and follows acceptable standards of graphical interface development.

The Motif standard is the chosen design standard for the graphical layer since Motif

is the most common graphical user interface standard and the probable choice to use

4-6

during implementation. Several rounds of prototyping storyboards defined the final

PESKI user interface that are approved by the lead PESKI researcher.

The accumulated design information is transformed into object oriented mod-

els suggested by Rumbaugh [72]. Many static and dynamic models of the interface

design were created and approved by the lead PESKI researcher. However, research

resource limitations and short term deadlines precluded the completion of a compre-

hensive set of static and dynamic models. Therefore, only a static diagram of the

high-level interface objects is presented (see Figure 4.2).

Graphical User

Interface

IIA]- Inferencing Driver

swhowledge Aquisitior

Driver

-- Edit Supports Driver

- Data Mining Driver

_ Verification and

Validation Driver

_ Knowledge Viewing

Driver

Figure 4.2 The Interface Architecture Static Model. An illustration that
shows the software objects that make up the interface architecture.

4-7

4.4 Designing the Intelligent Interface Agent

As previously mentioned, the IIA layer is responsible for managing the inter-

face's intelligence. The requirements of this element of the intelligent user interface

are to model user behavior in order to predict future user behavior or user intent

and suggest adaptations. These adaptations are targeted at helping the user utilize

the system and adjusting the interface to meet the user's application domain needs.

In order for the intelligent agent to be useful, it must have the ability to

reason [24, 12, 61]. In this research, the reasoning capability is enabled by the

following: collecting domain metrics, transitioning metrics into a representation,

storing information, and inferencing over the stored information. These actions

work hand in hand to provide an environment where the user interface can make

intelligent decisions. The IIA layer is designed with a knowledge representation, a

domain metric protocol, network performance metrics, and a storage protocol that

help the layer use the knowledge to meet interface requirements. These elements of

the IIA are composed in the objects of a static model(see Figure 4.3).

4.4.1 Knowledge Representation. The basic representation for the IIA's

knowledge is a Bayesian-based network called the interface learning network [35,

36, 37, 38]. User behavior is not deterministic, so representing user behavior in an

uncertainty-based architecture is appropriate. This representation has the ability to

portray a large amount of information based on the collection of only a small num-

ber of interface domain metrics, making this representation important for interface

reasoning efficiency. There are three types of nodes in the IIA's network: interface

learning nodes, interface information nodes, and uncertainty support nodes.

Interface learning nodes are used by the IIA to integrate and store the meaning

of collected interface domain metrics (described in Section 4.4.2) into the network.

These nodes not only hold a specific semantic meaning but also have a set of prob-

abilistic values attached to the meaning. The semantic meaning of each interface

4-8

Intelligent terface
'At(IIA)

Interface Learning
Network

Interface Information -- User Class Container
Node

Interface Learning Uncertainty SupportNode Node

Knowledge Viewing
Driver

Natural Language
Driver

Figure 4.3 The HA Static Model. An illustration that shows the software
objects that make up the IIA.

learning node is based on which event the node collects learning, such as a user mak-

ing a menu choice from an interface window. The actual structure of these nodes

consists of the numerator and denominator of a fraction. The specific semantics of

each interface learning node combined with its probabilistic values allows the inter-

face learning node to represent degrees of uncertainty in the learned information.

The interface information nodes represent the many states of the world within

the interface. These nodes utilize interface learning nodes, uncertainty support

nodes, and other interface information nodes to determine probabilistic values for the

states they represent. While the interface learning nodes are the primary gateway for

learning to enter the network, interface information nodes represent the application

4-9

of the network's learned knowledge. User interface elicitation of knowledge targets

the states represented by the interface information nodes, allowing the user interface

to make intelligent decisions concerning potential adaptations.

Finally, the uncertainty support nodes store information concerning the uncer-

tainty that the user interface will make a correct decision about a particular interface

information node (system state). The structure of these nodes is much like the struc-

ture of the interface learning nodes, and there exists exactly one uncertainty support

node for each and every interface information node. The probabilities stored in each

of these nodes represent all the instances when the interface is correct or incorrect

about inferencing over the interface information node it supports. This uncertainty

is applied to its parent interface information node to alter its parent's probability

when its parent is targeted for knowledge elicitation by the user interface. In this

way, the user interface decisions of the future will be affected by its correct and

incorrect inferences of the past.

The network design for this thesis tracks three main areas of user intent: BKB

file to use, function to use, and communication mode to use. The combination of

these three actions, using the topology of the interface learning network, allow for a

structure that can make a myriad of suggestions to assist the user(see Figure 4.4).

The dark ovals of Figure 4.4 represent interface information nodes while the light

ovals represent interface learning nodes. The squares of Figure 4.4 represent uncer-

tainty support nodes and the arcs represent causality.

The topology of the network must be able to alter itself in order for it to better

model each user and become more adaptive. In any user interface there are a finite

number of states in which the interface can be. These states are defined by the indi-

vidual states that the interface widgets can be. In a large user interface the number

of these states can be enormous, certainly too many to represent simultaneously.

Therefore, a user interface intelligence entity must be able to represent a subset of

4-10

U..'.l. Ls~P~f~ JnU. . ss V Pf U-..~ 0. U., P.~

Fiue44Nt or Deinfr h EKnIA n ilutaio htshw h

AB F

UigUN Using UN Using
Goldfisb.bk Afitbb PW15.bkb,

network design for the PESKI IIA's application of the interface learning
network.

the total number of interface states, and it must represent those states that are most

relevant (most useful to assisting the current user of the interface) [16].

Design of topology dynamics occurs at two levels in the IIA. First, add and

delete node operations are designed for interface information, uncertainty support,

and interface learning nodes. Second, a layer of decision making is added above

the interface learning network in order to help the hIA decide when to alter the

network. This layer is designed in a basic form, deciding over the domain of BKB

filename nodes in the network. When a user selects to use a BKB file that has

no node representation in the interface learning network, new nodes and causality

connections are created to support the new state. The new node can immediately be

used for learning and inferencing. Likewise, when the number of nodes exceed the

4-11

size of the relevancy set (the set of relevant interface information nodes), the node

with the lowest probability is removed from the network along with any nodes that

have dependencies exclusively with the deleted node.

Two important decisions are highlighted when designing the topology dynam-

ics. First, newly created non-class interface learning and uncertainty support nodes

begin with probabilities of 0.5, the most uncertain value between 0.0 and 1.0. The

newly created class learning nodes receive probabilities based on the class they rep-

resent. The second important decision is the limitation on the number of nodes

that can be part of the network at any one time. This limitation is set based on

computational barriers usually associated with large probabilistic networks.

4.2 Domain Metric Collection Protocol. The second element of the IIA's

reasoning ability is a domain metric collection protocol for metrics based on the

operations being performed on the expert system. These metrics are called interface

domain metrics. Interface domain metrics can be just about any type of data.that

a user interface can collect from the application domain or the user. This data

includes keystrokes, procedures used to perform tasks, user preferences, and tasks

most often performed. The number and type of interface domain metrics collected is

solely based on knowledge required for user interface reasoning. Information about

the application domain can be acquired from a single interface domain metric or

combinations of different types of metrics.

The collected interface domain metrics then need to be transformed into some

meaningful information. The information format must be based on one that the

user interface requires for making decisions at a later time. This step suggests an

intermediate reasoning step that develops a meaning for the metric collected. In

the IIA, this step includes incrementing the numerator and denominator elements

of interface learning nodes. When the user interface makes a decision, the interface

can draw upon knowledge stored in the IIA's network. The architecture of the IIA

4-12

allows for the correct return of the metric information stored in the interface learning

nodes.

.4.3 Identification of Network Performance Metrics. Network perfor-

mance metrics are defined in order to examine the network properties later in testing.

There are four metrics adopted for this research: absolute thrashing, class thrashing,

rate of divergence, and rate of convergence [21]. The intention of this thesis is to

present these initial metrics but not to fully explore them. More discussion of these

metrics are made in Chapters VI and VIII of this thesis.

Absolute thrashing characterizes an interface information node that, due to

perceived user behavior, continually moves in and out of the relevancy set. This

occurs when the IIA builds a new interface information node for a newly captured

user action, and then the user avoids that action for a period of time. Eventually the

node's probability degrades as other actions are made, leading to the node leaving

the relevancy set and being deleted by the IIA. It is important to avoid this sequence

occurring continually to a single interface information node since every time the node

falls out of the relevancy set, its probabilities are lost. Thus, the long term relevancy

of the node is lost.

User thrashing characterizes extreme shifts in the probabilities of interface

information nodes in the relevancy set. These shifts can indicate a user who can't

make up their mind or the inability of the network to accurately predict user intent.

Collection of this metric can support dynamic network adaptation decisions of the

IIA.

Rate of divergence is the rate of probability change of an interface informa-

tion node that pulls the node away from the fringes of the relevancy set. Rate of

convergence is the rate of probability change of an interface information node that

pushes the node toward the fringes of relevancy set. Both of these metrics present

4-13

trend changes in node probabilities that can also assist the IIA in making dynamic

network adaptation decisions.

4.4.4 Storage Protocol. The key to the storage protocol is the network

implementation file. This file is a representation of the network that can efficiently

be stored remotely. The network uses the network implementation file as a roadmap

for instantiating network nodes, setting up the parent-child relationships (causalities)

between the nodes, and initializing the node probabilities. Every user of PESKI has

their own network implementation file.

Every network node is designed to store their probabilities in their instantiated

objects at runtime. When a user exits the system, their probabilities must be stored

off line in their network implementation file for later use. The user container tracks all

network implementation files and manages the file storage and retrieval operations.

The user class container tracks probabilities for interface learning nodes that

are designed as class nodes for the four class types: application user, application

expert, knowledge engineer, and computer scientist. When a particular user's class

learning node receives metrics during system use, the class node is updated for that

user's class.

4-14

V. Implementation of the Intelligent User Interface

Examination of available computing resources led to implementation on a Sun

Sparcstation 5 using the C++ programming language with the GCC version 2.7.2

compiler. C++ is the language of choice since all the system tools are written in

C++ and Motif, the standard of choice for this interface, is written in C++.

5.1 Implementation of the Interface

Research into automated GUI builders led to the purchase of SPARCworks/Visual

[4], a Motif/OSF standard GUI building tool developed by Sun Microsystems. SPAR-

Cworks/Visual offers a variety of Motif widgets and allows for quick, object-oriented

prototyping and generation of graphical interface designs. The interface story-

board prototypes were converted into a working user interface using the SPAR-

Cworks/Visual tools. Additional reviews and prototyping were accomplished on

SPARCworks/Visual until the lead PESKI researcher and system tool deveropers

approved the design. C++ code was then generated automatically by the SPARC-

works/Visual tool, creating the graphical layer of the design.

The implemented user interface is a multimodal graphical interface that sup-

ports structured text and graphical manipulation communication modes. It also

provides an interface for a natural language communication mode, however, no nat-

ural language processing engine has been developed. Finally, the interface offers

fully interactive help through the use of an embedded Netscape [7] application. See

Appendix A for Netscape access information.

The structured test communication mode consists of over 700 Motif widgets

organized into 8 windows in accordance with the interface storyboards. These allow

user access to all expert system functions, including login, using textual representa-

tion of information mixed with graphical controls such as buttons and menus.

5-1

Graphical communication for the intelligent user interface is provided through

a tool called daVinci [32]. This powerful and versatile graph drawing program al-

lows for quick prototyping of graphical manipulations, providing objects and object

connectors on a drawing window. These objects can be displayed and manipulated

by passing script commands to daVinci and receiving responses back from daVinci.

See Appendix A for basic details on access to and use of daVinci.

Each system function has its own graphical communication screen. These

screens are accessed from the main PESKI window or from menu choices on each

of the structured text screens. All graphical communication screens provide basic

viewing of BKB components and states. Full graphical manipulation is not incor-

porated on all graphical communication screens due to focus of research resources

on higher priority subjects. However, the base implementation presented so far does

provide the larger test domain for the IIA and proves graphical communication can

be implemented. Further implementation of graphical communication is discussed

in Chapter VIII.

5.2 Implementation of the IIA

The IIA layer of the design is implemented by converting the previously de-

picted object classes into C++ programming code. A Bayesian network computing

tool called CaBeN [28] is used for inferencing over the interface learning network.

This tool is a collection of Bayesian network computing algorithms such as Brute-

Force, Logic Sampling, and Chavez. Many of these are stochastic algorithms so

they return statistical approximations. However, these stochastic algorithms return

answers that are accurate enough for use by the IIA.

5.3 System Integration

Integration of the intelligent user interface occurred once all the individual lay-

ers of the design were implemented and tested. The integration began by merging

5-2

the system layer and the graphical layer. This merger allowed for testing of the

integration as well as testing the interface's ability to access all the system function-

alities. The IIA layer was then merged into the system in preparation for testing

of the interface intelligence. See Appendix A for information on how to access the

final, integrated version of PESKI.

5.4 Communication Between the 11A and the Interface

The communication between the physical user interface and the IIA is imple-

mented to ensure efficient passage of data between the physical user interface and the

IIA. There are two types of communication implemented: learning and suggestion.

Learning communication is enacted when an event occurs in the user interface

that the interface recognizes as important to the IIA. These events include the loading

of a BKB filename, starting a PESKI tool, and changing communication modes.

When such an event occurs, the interface notifies the IIA by calling an IIA method.

The IIA interprets the learned event and transfers the learning to the appropriate

interface learning node.

Suggestion communication is enacted when an event occurs in the user interface

that the interface recognizes as needing a suggestion. The only event implemented

currently in PESKI is needing a suggestion at system login. When such an event

occurs, the interface notifies the IIA by calling an IIA method. The IIA develops

the appropriate suggestion and sends it to the interface for presentation to the user.

If the suggestion is accepted by user, the interface carries out the suggestion.

The basic suggestion presentation form is a dialogue window with a primary

and alternate suggestion. Each of the two suggestions can hold any number of

subsuggestions. For example, the first suggestion can be the most probable system

function that the user will want and the second suggestion can be the second most

probable system function. Further, the first suggestion can be the most probable

system function and the most probable BKB file, and the second suggestion could

5-3

be the second most probable system function and BKB file. The combinations of

suggestion can vary, and the testing in Chapter VI will examine the performance of

some combinations.

5-4

VI. Testing the HA

There are two basic types of testing performed for this research: mathemati-

cal soundness and usability. Mathematical soundness testing is performed to ensure

the complex mathematics that govern the use of probability distributions are fol-

lowed. Usability testing explores the usefulness of the research product to real users.

Together, these testing forms support the claim that the goals of this research are

met.

6.1 Mathematical Soundness Testing

Testing for the accuracy of combining probabilities is based on the premises of

Bayes theorem [68, 26]. In the interface learning network there are two possible cases

of node configurations that can occur. In the simple case, an interface information

node is supported by one uncertainty support node and one or more interface learning

nodes. The second, more complex, case includes an interface information node that

is supported by one or more interface information nodes, one uncertainty support

node, and one of more interface learning nodes.

Each of the two types are tested in three phases. First, the probabilities are

combined by hand using accepted mathematical techniques. Second, the same com-

bination of nodes is programmed into the interface learning network and the proba-

bilities are combined using the network's computational facilities. Third, the results

of the hand calculations are compared with the results of the network's computations.

6.1.1 Computational Accuracy: Simple Case. This example of a simple

network demonstrates how the network learns and how the learned data can be used

to create a probability for a possible state [38]. Figure 6.1 depicts the network used

in this example. Notice, there is only one interface information node, User is Using

Graphical Communication (UGC). There is also one supporting uncertainty support

6-1

node, Uncertainty User is Using Graphical Communication (UUGC). Finally, there

are two interface learning nodes, User's Class Prefers Graphical Communication

(CPGC) and User Prefers Graphical Communication (UPGC).

Uncertainty User is User is Using
Using Graphical Graphical Communication
Communication (UGC)

(UUGC)

T = 0.65
F = 0.35

User's Class Prefers User Prefers
Graphical Communication Graphical Communication

(CPGC) (UPGC)

T = 0.82 T = 0.44
F = 0.18 F= 0.56

Figure 6.1 Computational Accuracy: Simple Case Example. An illustra-
tion of the network design for an example that shows how learning and
inferencing is performed on an interface learning network.

For this example, a user, login TOM, has logged onto PESKI. The interface

learning network recovers all the learned data about TOM from storage and sends

the data to the appropriate interface learning nodes and uncertainty support nodes

in the network. With the network loaded, TOM begins to use PESKI. As TOM

performs actions through the interface, the interface records TOM's behavior by

calling the learning method of the IIA, which in turn updates the nodes related

to TOM's behavior. For example, in Figure 6.1, if TOM chooses to use graphical

communication from the communication mode menu of the interface, the interface

6-2

will call the update data methods for the interface learning nodes CPGC and UPGC.

Thus, TOM's behavior is captured.

Later, if the user interface wants to predict what communication mode TOM

will chose, the interface will query the UGC interface information node, calling the

node's compute probability method. This method will then combine the probabilities

of interface learning nodes CPGC and UPGC and the uncertainty support node

UUGC.

The probabilities are combined using the following method [68, 26]. First, a

truth table is constructed that lists all the possible combinations of the truthfulness

of the interface learning nodes. Therefore,

P(UGC = T CPGC = T, UPGC = T) :=1.00,

P(UGC = T CPGC = T, UPGC = F) 0.65,

P(UGC = T CPGC = F, UPGC = T) 0.65, and

P(UGC = Tj CPGC = F, UPGC = F) :=0.00.

Notice, if the probabilities that CPGC and UPGC are both true then the

probability of UGC being true is 1.00, and if the probabilities that CPGC and

UPGC are both false then the probability of UGC being true is 0.00. The usefulness

of the uncertainty support node UUGC comes into play when the probability of an

interface information node is not absolute. In these cases, the uncertainty of the

truthfulness of the node must support the interface information node. In this case,

UUGC gives the value of 0.65 to the conditional probabilities of the uncertain values

of the truth table.

Once the truth table is constructed, the probabilities may be combined using

Bayes theorem:

P(UGC = T) = P(UGC, CPGC, UPGC)

+(UGC, -,CPGC, UPGC)

+(UGC, CPGC, -,UPGC)

+(UGC, -CPGC, --UPGC)

6-3

P(UGC = T) = 1.00 * 0.82 * 0.44

+ 0.65 * 0.18 * 0.44

+ 0.65 * 0.82 * 0.56

+ 0.00 * 0.18 * 0.56

Therefore, (UGC=T) = 0.7108 or 71%, the same result produced by the im-

plemented version of the interface learning network. Given this result, the user

interface has acquired a mathematically sound method to capture user behavior and

then convert it into a representation so the user interface may reason about future

user intent.

6.1.2 Computational Accuracy: Complex Case. This example covers a

more complex network, demonstrating how probabilities from one interface informa-

tion node can be used to support another one [38]. Figure 6.2 depicts the network

for this example. This example expands the simple case by adding a new interface

information node, User is Using Knowledge Acquisition (UKA), that is supported by

one new interface learning node, User Prefers Knowledge Acquisition (UPKA), and

one of the previous interface learning nodes, User Prefers Graphical Communica-

tion(UPGC). The new uncertainty support node that supports UKA isUncertainty

User is Using Knowledge Acquisition (UUKA).

For this example, a user, login JANE, has logged onto PESKI. The network is

initiated much like the scenario in the simple case. Later, if the user interface wants

to predict what interface tool JANE will chose, the interface will query the UKA

interface information node, calling the node's compute probability method. This

method will then combine the probabilities of UKA's child nodes.

The probabilities are combined in the following way. First, a truth table is

constructed that lists all possible combinations of the truthfulness of the child nodes.

Therefore,

6-4

Uncertainty User is User is Using User Prefers

Using Knowledge (Knowledge Aquisition) (Knowledge Aquisition)
Aquisition (UA (UPK,)(UUKA) I

T- 0.31 T - 0-o.78

F - 0.69 F - 0. 12

Uncertainty User is p er n a User Prefers.
Using Graphical I Th CT, G ,U, P at) 10

Communication (TU A =)

(UUGC) CUGC F

~T - 0.44

T(K -0.I CPG -FUG0.F5G6=F UK F .0

F - 0.35

T - 0.82
F - 0. 18

Figure 6.2 Computational Accuracy: Complex Case Example. An illus-
tration of the network design for an example that shows how learning
and inferencing is performed on an interface learning network.

P(UKA = Tj CPGC = T, UPGC = T, UGC = T, UPKA = T) :=1.00,

P(UKA = Tj CPGC = F, UPGC = T, UGC = T, UPKA = T) :=0.31,

P(UKA = Tj CPGC = T, UPGC = F, UGC = F, UPKA = F) :=0.31, and
P(UKA = Tj CPGC = F, VPGC = F, UGC = F, UPKA = F) :=0.00.

Once the truth table is constructed, the probabilities may be combined using

Bayes theorem:

6-5

P(UKA = T)= P(UKA, CPGC, UPGC UGC UPKA)

+(UKA, -CPGC, UPGC UGC UPKA)

±(UKA, CPGC, UPGC UGC -UPKA)

+(UKA, -CPGC, - UPGC -UGC -iUPKA)

P(UKA = T) = 1.00 * 0.82 * 0.44 * 0.71 * 0.78

+0.31 * 0.18 * 0.44 * 0.71 * 0.78

+0.31 * 0.82 * 0.56 * 0.29 * 0.12

+0.00 * 0.18 * 0.56 * 0.29 * 0.12

Therefore, (UGC=T) = 0.5023 or 50%, the same result produced by the im-

plemented version of the interface learning network. As in the simple case, the user

interface has demonstrated a mathematically sound method to capture user behavior

and then convert it into a representation. This example also shows how explosive

computations can be when the network size is expanded.

6.2 Usability Testing

There are five general tests that are used in this research to indicate a suc-

cessfully usable interface intelligence. The first test is a collection of physical work

requirements that quantify procedures the user must follow to get work done. How

positively or negatively the user feels about using the interface intelligence is captured

in the second test. The third test measures responsiveness burdens the intelligence

places on the interface. The final test examined the accuracy of the user model of

the intelligence, or in other words, how closely the model actually represents user

intent.

6.2.1 Physical Work Requirements. Collecting the physical work a user

is required to do is one way to evaluate the usefulness of the interface intelligence.

6-6

Physical work requirements such as keystrokes, menu selections, reading, and button

presses are collected for a user utilizing the interface intelligence. Care must be taken

when drawing conclusions from physical work requirements since this data does not

form a complete picture of interface usability.

The current implementation of the IIA makes suggestions pertaining to what

system function, communication mode, and BKB file the user wants to access at

system startup. Therefore, this test concentrates on physical work required of the

user if the user starts these choices themselves versus the physical work required if

the user interacts with the IIA to make these choices.

Appendix B shows the data collected to test the usefulness of the IIA. These

results clearly show that using the IIA's suggestions yields a considerable savings

in physical work for the user. This data can be compared with the data from user

model accuracy tests to ensure a true cost savings in physical work over time. These

results also show that over time the user receives a work savings when using the IIA

instead of making startup choices manually.

6.2.2 Acceptance of the IIA. User acceptance data is collected by exposing

a number of users to the interface intelligence and eliciting user opinion on a written

survey. This survey is a carefully constructed list of instructions and questions

that guides the user though the IIA's capabilities and require exact and free-form

responses from the user concerning these capabilities. The survey is clear, consistent,

and precise. The survey used for this research is found in Appendix C.

Collecting data that indicates user acceptance of an intelligent user interface

is difficult. User acceptance is affected by factors such as user's computing experi-

ence, prejudices, and constantly changing moods. Therefore, like the collection of

physical work requirements, care is taken when drawing conclusion solely from user

acceptance results.

6-7

Appendix D lists the results of a small user acceptance study for the IIA. The

sample size is five users of somewhat high computer experience. The test results are

divided into three general areas: timeliness of operations, complexity of operations,

and usefulness of the IIA.

Users were generally satisfied with the timeliness of operations, although they

seem to find the automatic operations performed by the IIA slightly slower than per-

forming the same operations manually. This contradicts the responsiveness testing

results from Appendix E that show faster performance using the IIA's suggestions.

The results of the complexity evaluation are mixed. Users seemed to find the

single suggestion to loading a BKB file less complex than loading the BKB file man-

ually. This result is supported by the physical work requirements for BKB loads

found in Appendix B. However, users found the double suggestion of system func-

tion and communication mode more confusing than manually choosing the system

function and communication mode from the main window. This result is somewhat

supported by the fact that the work requirements for manually selecting the system

function and communication mode are low.

The usefulness of the IIA's suggestions are as expected. Users generally found

the IIA to be useful, although these results are most probably influenced by the

results for user opinion on timeliness and complexity. A more indepth user accep-

tance study is desired to collect long term opinions of the IIA from many users using

PESKI to perform real tasks (see Chapter VIII).

6.2.3 Responsiveness of the IIA. Responsiveness of an interface is typically

an important criteria for interface users. Therefore, testing the responsiveness of the

interface, particularly the effect intelligence has on interface responsiveness, is a

collection of user opinions and empirical data. The user opinions are collect in the

same manner described in the user acceptance test description. Empirical data is

taken by collecting real time data during interface functions that are influenced by

6-8

the interface's intelligent structures. Together, this data can give a good picture as

to the acceptability of the intelligent user interface's responsiveness.

Appendix E lists the results of the responsiveness study for the IIA. The real

time data indicates the current implementation of the IIA creates some user notice-

able pauses. The noticeable pauses are created mainly by update calls to CaBeN

and execution calls for daVinci. The user acceptance study shows that users found

the pauses noticeable but acceptable.

6.2.4 Accuracy of the User Model. A study of the IIA's ability to predict

future user behavior is necessary in order to determine if the IIA accurately models

user intent. This can be accomplished by observing the dynamics of the agent's

suggestion generation capabilities when given a set of test cases that mimic user

behavior [38]. There are three test cases used for this research to explore the accuracy

of the user model: single focus, double suggestion, and triple suggestion.

6.2.4.1 Overcoming Evidence to Adapt Single Focus Case. In this

case the probabilities of two interface information nodes, Using Data Mining (UDM)

and Using Inference Engine (UIE), are tracked through the case of a user changing

their mind. The user starts PESKI for the first 15 times with the intention of

using the Data Mining function. This user accepts any suggestion for starting Data

Mining and rejects any suggestion that doesn't suggest Data Mining. After the

initial 15 times the user switches their preference to the Inference Engine, accepting

or rejecting suggestions based on this new preference. For this case, only the function

suggestion is evaluated and all other elements of each suggestion (BKB filename and

communication mode) are ignored.

The results of this test are shown in Figure 6.3. These results clearly show

the IIA's ability to adapt to the user's change in preference. In this case, the IIA is

able to generate a correct suggestion in only two iterations from the change in user

behavior.

6-9

User is Using Data Mining (UDM) User is Using Inference Engine(UIE)

1.00 • UDM.
.............. ..

0.90 •"

0.80 '.

0.70•.

0.60 '

Probability 0.50 "

0.40 'UIE becomes 1st suggestion choice

0.30

0.20

0.10
UIE becomes second suggestion choice

0.00
0 10 15 20 25 30 35 40

Procedural Steps

Figure 6.3 Overcoming Evidence to Adapt Single Focus Case. An illus-
tration that shows how quickly the network probabilities change when
a user builds evidence towards one single state choice and then changes
their choice.

6.2.4.2 Overcoming Evidence to Adapt Double Suggestion Case. This

test case differs from the last in that the focus of the user is on a combination of

suggestions including BKB filename, system function, and communication mode.

At system startup, two BKB filenames are suggested. Once one is chosen or both

rejected another two suggestions appear, giving suggested function and communica-

tion mode combinations. This combination or double suggestion must be completely

true (both parts) in order for the user to accept it.

In this case the probabilities of six interface information nodes are tracked:

Using Knowledge Acquisition (UKA), Using Inference Engine (UIE), Using Text

6-10

User is Using Inference Engine(UIE) User is Using Knowledge Aquisition (UKA)
with full5.bkb(UFB) with afit.bkb (UAB)
and Structured Text Communication (UTC) and Graphical Communication(UGC)

1.00 UIE,

UKA/UGC and UAB become
0.90-prmrsugsin

0.80 . UGC

0.70"UAB

UA

Probability 0.50UKA0.50 1-z_. .0 .0o
• /."UFB

0.30."

0.20 ... UIE

............. UKA/UGC becomes second suggestion

0.10 U UKA: JUAB becomes second suggestion

0 .00 i i i i i ; I I I i i i i i ! i i i i i I

0 to 15 20 25 30 35 40

Procedural Steps

Figure 6.4 Overcoming Evidence to Adapt Double Suggestion Case. An
illustration that shows how quickly the network probabilities change
when a user builds evidence towards one double and one single state
choice and then changes their choice.

Communication (UTC), Using Graphical Communication (UGC), Using Full5.bkb

(UFB), and Using Afit.bkb (UAB). The user starts PESKI for the first 10 times

with the intention of using the Inference Engine function with Text Communica-

tion and Full5.bkb. This user accepts any suggestion that is completely true and

rejects any suggestion that is not completely true. After the initial 10 times the

user switches their preference to the Knowledge Acquisition function with Graphical

Communication and Afit.bkb, accepting or suggesting behavior based on these new

preferences.

6-11

The results of this test are shown in Figure 6.4. These results clearly show the

HA's ability to adapt to the user's change in preferences. It should also be noted

how the causalities within the network (see Figure 4.4) have interesting effects on

the nodes tracked in this case, such as the behaviour of UGC versus the behavior

of UAB and UKA. Also, the acceptance and rejection of suggestions, especially the

rejection of suggestions that are partially but not fully correct, have an interesting

affect on the probability distribution throughout the network. This fact is the reason

for UAB's rapid increase in probability after the 17th step while UKA only maintains

a steady rise in probability.

User is Using Inference Engine(UIE) User is Using Knowledge Aquisition (UKA)
with fulIS.bkb(UFB) with afit.bkb (UAB) and text communication(UTC)
and Graphical Communication(UGC)

1.00-,
UIE:,

0.90-•

0.80-•

0.70-- UFIJ

0.60" -% ""' '

Probability 0.50 -:-.-

0.40- '
""UGC'," ...0 .0,:::: = ..

0.2'UAB:

0.0--

o c o10 - -I I I I I I I I f I I I I I I I I I I I I I i I i i i
0 5 10 15 20 25 30 35 40

Procedural Steps

Figure 6.5 Overcoming Evidence to Adapt Triple Suggestion Case. An
illustration that shows how quickly the network probabilities change
when a user builds evidence towards one triple state choice and then
changes their choice.

6-12

6.2.4.3 Overcoming Evidence to Adapt Triple Suggestion Case. This

case is exactly like the previous case except that the suggestion generation method is

different. At startup, the user is only provided two suggestions, each a combination

of system function, communication mode, and BKB filename. As with the previous

combination suggestion, all parts of this triple suggestion must be true for the user

to accept the entire suggestion.

The results of this test are shown in Figure 6.5. These results show a failure

of the IIA to adapt to the user's new behavior. This failure is due to the practice of

rejecting triple suggestions that aren't totally true. This creates what appears to be

user thrashing, but the erratic behavior is really a failure in the application of the

suggestion method. This highlights the need to use the IIA carefully when applying

it to a target system.

6-13

VII. Results and Conclusions

The evaluation of this research focuses on three areas. First, the results of this

research are compared with the original goals to conclude the success or failure of

meeting the goals. Second, strengths of this research are examined to highlight the

impacts of this research on the study of interface intelligence. Third, the weaknesses

are uncovered that set the stage for the future research described in Chapter VIII.

7.1 Accomplishment of Research Goals

The four initial goals described in Chapter 1 of this thesis are designed as

a roadmap toward performing successful research. Each of these goals are now

examined in detail to determine if the goals have been met, and if not, to what

extent they have been met.

7.1.1 Modeling User Intent. The testing performed in Chapter VI, par-

ticularly in Section 6.2.4, shows that the intelligent user interface can adapt its

suggestion based on changes in the user's behavior. This supports the claim that the

IIA does model user intent. However, the test results also show the changes occur

only gradually, sometimes too slowly to claim the IIA perfectly models user intent.

For example, the IIA fails to recognize trends in user behavior that could be used by

the IIA to alter the user's profile more quickly. The test case from Section 6.2.4.3

also highlights that misuse of the IIA can lead to an inaccurate model. Chapter VIII

discusses some future research that can address these problems.

7.1.2 Complexity Abstraction. Whether or not this goal is met can be

argued. On one hand, the current implementation of the interface intelligence lets

the user accept suggestions to perform tasks and save the user work, as seen in

Section 6.2.1. For example, a user who accepts a suggestion to load a particular

BKB file is saved from the work of searching for the file through directories and then

7-1

loading it. In this way, the IIA does provide some complexity abstraction. Yet, the

IIA's suggestions don't currently apply to the real complex operations of PESKI,

such as knowledge acquisition tasks. Once the IIA is applied to a wider range of

complex system functions, a true evaluation of complexity abstraction can be taken.

7.1.3 Maintenance of Generic Nature. The intelligent user interface does

meet the goal of maintaining the generic nature of PESKI. The physical user interface

is modeled to support PESKI's tools but there are no signs of a particular application

domain in the final interface. The suggestions presented by the IIA currently pertain

to the system's functions, communication modes, and BKB filenames, all of which

are independent of the application where PESKI is used.

7.1.4 Viability of Bayesian Interface Intelligence. The testing performed

in Chapter VI, when observed as a whole, shows great promise for using Bayesian

techniques for interface intelligence. The mathematical accuracy and ability of the

IIA to model user intent prove the ability to apply Bayesian techniques to the study

of intelligent user interfaces. The responsiveness, work, and user preference studies

show a technique that is acceptable, but needs to be refined in responsiveness. Fi-

nally, the ability to capture uncertainty through Bayesian techniques has immense

value to the accuracy and dynamics of IIA's predictions.

7.2 Strengths of the Research

There are three major strengths to this research: mathematical accuracy for

capturing uncertainty, adaptability, and foundation for Bayesian-based interface in-

telligence. Together, these strengths support the claim that this research is an im-

portant, useful contribution to the study of intelligent user interfaces.

7.2.1 Mathematical Accuracy for Capturing Uncertainty. The Bayesian

methods used for manipulating the probabilities of the interface learning network

7-2

have a solid basis in proven mathematics. Using these proven mathematical founda-

tions, uncertainty is captured and utilized effectively to perform predictions of user

intent. This strength shows a sincere effort to avoid ad-hoc methods for interface

intelligence such as statistical-based limits and certainty factors.

7.2.2 Adaptability. The ability of the IIA to adapt suggestions is very

dynamic and strongly tied to mathematically correct probabilistic changes. The

current implementation is generic enough in nature to allow application of the IIAs

adaptability to many interface domains and users. This strength shows the usefulness

of applying the IIA to other systems that require interface intelligence.

7.2.3 Foundation for Bayesian-Based Interface Intelligence. As shown in

Chapter VIII, this research provides a firm foundation to spawn more studies into

Bayesian based interface intelligence. This research area is brand new to the Air

Force Institute of Technology (AFIT), and this thesis has ensured that Bayesian-

based interface intelligence is now a continuing part of the AFIT research program.

Also, the development of the IIA's mathematically and semantically sound repre-

sentation has already drawn interest and support from editors of notable scientific

publications [21, 35].

7.3 Weaknesses of the Research

The four main weaknesses of this research are computational barriers, verifi-

cation of user intent models, the overlooking of key indicators, and the additions to

the methodology. Overcoming these main barriers are the key to the future of this

research, as seen in Chapter VIII.

7.3.1 Computational Barriers. The computational problems common to

many probabilistic representations is a serious barrier to the scalability and perfor-

mance of the interface learning network. The current solution found in CaBeN still

7-3

has problems with the inaccuracy of stochastic methods and slowness in updating

CaBeN's network representation. The computational barrier may not be completely

removed but may be pushed back in order to improve the usability of the current

IIA representation.

7.3.2 Verification of User Intent Models. Simply running test cases in order

to simulate and observe the network's ability to model user intent is not enough to

fully verify the accuracy of user intent and usability of the IIA. Full usability studies

need to be performed on the IIA in order to truly claim the research goals are met.

7.3.3 Overlooking of Key Indicators. As seen in Chapter VI, Section 6.2.4

the IIA does adapt to changes in user behavior, but those changes are too slow.

Further, the IIA misses key indicators, such as the rate of convergence and rate of

divergence (discussed in Chapter IV) that show the user has drastically changed

their behavior. This miss causes the interface to continue making wrong predications

far longer than it should.

7.3.4 Additions to Methodology. The original methodology in Chapter III

is a good framework for this research and is key to the overall research success.

However, there are many areas of the methodology that have proved to be too

scarce in details. For example, Section 3.4 gives some indications on how to go about

developing the interface intelligence but lacks details on exactly how to evaluate and

choose an appropriate knowledge representation. Identification and detailing of these

sparse areas would improve reusability of this methodology for future research (see

Chapter VIII).

7-4

VIII. Further Research

There are many areas of research that can be spawned from the results shown

in this thesis. Addressing these areas will improve the viability of this research and

overcome the weaknesses described in Chapter VII. The most important areas for

future research are listed in this chapter, although many more may be realized.

8.1 Development of an Interface Intelligence Language

Communication protocols between the IIA and the graphical user interface

became increasingly important in the later phases of this research. One particular

problem area was the visibility requirements of the IIA and the graphical user inter-

face to each other. Increasing amounts of visibility between the two entities degraded

the portability and modularity of the IIA.

One promising area of research is to define a common interaction language

that can be used by the IIA and the graphical user interface [21]. This language

can be developed by first producing a finite state machine that models a typical

interaction between the two entities. Next, a grammar can be developed that defines

the machine. This grammar can then become a common language that the IIA and

graphical user interface can use. Transplanting the IIA to another user interface will

then be only a matter of integrating the new grammar into the new user interface.

Development of this language can lead to improved portability of the IIA. The

production of a portable interface intelligence can be of great use to the scientific

community. The availability of a proven intelligence that can easily be tied into any

system's user interface will allow the benefits of interface intelligence to be spread to

all types of systems. This availability will spur increasing dependency for intelligent

assistance and show to the average user that artificial intelligence can be useful.

8-1

8.2 Meta-Levels of Interface Learning

The ability of the IIA's network to model user behavior can be expanded by

designing the interface to understand user behavior. For example, if the interface

measures patterns of indicator swings and stores those patterns for a particular user,

the interface may begin to classify those patterns. The interface may then be able

to assign patterns to user traits, such as moods. The incorporation of temporal

reasoning into this representation would allow the interface to predict user traits

based on the stored patterns [41].

Research should be started into efficient ways for the meta-level of intelligence

to recognize when it is truely correct and incorrect about a prediction. Currently, the

IIA only knows it has made an incorrect prediction if the user rejects that prediction.

A more sophisticated intelligence may require memory of past state changes to really

understand when it is correct and incorrect. Solving this problem is key to realizing

the real value of the uncertainty support nodes, since their values are updated from

correct and incorrect predictions.

Currently, the IIA possesses some element of meta-learning, evident in the

uncertainty support nodes. The IIA can be enhanced if it is able to interpret why it

makes bad predictions. Changes in probabilities could be used as key indicators to

the IIA. These indicators can be used to determine that a problem exists and to find

ways to solve the problem. For example, if the IIA sees wide swings in interface use

from these indicators, it may be able to make more dynamic predictions. Taking this

idea a step further, once the IIA recognizes a cause of failure, the IIA can dynamically

alter the relationships in the network to reduce the chances of reoccurrence.

8.3 Computational Efficiency

One area of further research is to find ways to make the network computations

more efficient. Increased efficiency would expand the maximum size of networks

considered to be computationally reasonable. This can be accomplished by listing

8-2

and prioritizing potential user and interface behavior in order to find the relevant

behavior to model. With the limit on network size, this study could point to behavior

that is not relevant to IIA predictions.

Computational efficiency gains can also be made by adopting a better technique

for network inferencing. The current use of CaBeN has proven to be effective, but

CaBeN imposes responsiveness burdens on the IIA. These burdens can be removed

by implementing an efficient stochastic algorithm directly into the IIA. This imple-

mentation has the potential to dramatically improve responsiveness and usability of

the IIA.

8.4 Refinement of the PESKI User Interface

Further refinement of the PESKI user interface's capabilities with graphical

manipulation, natural language communication [39], and dynamic dialogue produc-

tion [70] will provide a richer environment for exercising the IIA. Graphical ma-

nipulation can be refined by implementing additional graphical control in daVinci

windows, such as moving, adding, and deleting BKB elements. The introduction of

a natural language parser and standardized grammar will allow full natural language

capabilities to be enacted. Finally, the addition of dynamic dialogue for PESKI's tool

operations will allow greater user interaction with the tools. These improvements

to PESKI will also allow the interface learning network to be expanded in scope,

providing numerous and varied suggestion opportunities for PESKI users. This, in

turn, will lead to better testing and understanding of the IIA's capabilities.

8.5 Connections Between Network and Cognitive Models

Tying similarities between aspects of the interface learning network model to

already proven cognitive models of user behavior can significantly strengthen the

premises of this research. User models can be described by graphically capturing

user behaviour, such as the graphs presented in Chapter VI. These graphical repre-

8-3

sentations can be compared with the results of of user modeling research, particularly

with intelligent tutoring research [10, 87]. If such ties can be found, they would garner

support from cognitive science researchers in the search for more accurate, efficient

intelligent user interfaces.

8.6 Development of a Generic Methodology for Interface Intelligence Research

As described in Section 7.3.4, the methodology framework for this research is

sound but lacks in some details. Addition research details can be derived that would

enhance to completeness of the methodology. Therefore, a future research initiative

is to take the base methodology from Chapter III and the uncaptured details in order

to create a proven, generic methodology for developing interface intelligence. The

additional details should mainly support three areas of the methodology: developing

requirements, designing the intelligence, and testing the integrated intelligent user

interface.

8.6.1 Additions to Requirements Development Methodology. One action

that would greatly enhance the requirements development methodology is to cre-

ate abstract models of the potential system users during the requirements defini-

tion phase. These models should map the facts gathered concerning potential user

classes to a model that depicts how that behavior relates to the user interface and

the software system. The value of these models would emerge during design of

the intelligence structure, providing a firm foundation for designing the knowledge

representation and domain metric protocol.

The user models can be complemented by evaluating the precise needs for

intelligent intervention between user behavior and system performance. This study

should focus on two types of interactions: those where intelligence is required and

those where intelligence is beneficial. Interactions where intelligence is required can

include those where very complex human-computer interaction takes place, those

8-4

that require large amounts of user short-term memory, or those where high user

error rates are expected. Interactions that are beneficial to the user can also be

explored. These interactions can include those that require numerous, repetitive

tasks, those that create an environment conducive to greater user acceptance of the

system, and those that reduce the user error rate.

8.6.2 Additions to Intelligence Design Methodology. There are three areas

of the intelligence design methodology that need to be detailed: knowledge repre-

sentation development, metric identification, and defining the relevancy set.

The design process for the knowledge representation should include a com-

plete study of available knowledge representations. Consideration must be given to

representation traits. The ability to represent uncertainty is an important trait to

evaluate. Uncertainty gives the knowledge representation a powerful ability when

generating suggestions in the uncertain environment of human behavior prediction.

Computational performance is another critical trait to evaluate. The efficienjcy of

learning and inferencing on a knowledge representation can determine if a represen-

tation is even usable. Also, scalability of the representation must be considered.

This may not be a factor for a small, static system. However, large systems that

require dynamic interface intelligence will require a knowledge representation that

can grow with a growth in user needs.

Metrics are used in this thesis to define data learned from the application

domain and performance of the interface learning network. A generic methodology

for developing interface intelligence should include a detailed examination of these

two types of metrics. The interface domain metrics should be identified by examining

the user models, the target system, and application domain to find specific actions

that bind them all in human-computer interaction. Once these binding actions are

identified, they must be compared with the chosen knowledge representation to find

a mapping of the actions to the representation. The performance metrics should

8-5

be developed to target those areas where use in the knowledge representation affect

factors such as scalability, responsiveness, and accuracy. These metrics are not only

useful for evaluating the intelligence in testing, see Section 8.6.3, but can be used

for the development of meta-levels of intelligence as discussed in Section 8.2.

Formally defining the relevant set data to collect is important to realizing a

scalable, usable intelligence. Most system environments are too complex to collect

data about everything. Therefore, a generic methodology should include a study to

evaluate how much data from the user models is needed to support the intelligent

intervention. This must be a balanced between the maximum amount of data that

can be managed by the knowledge representation and keeping the representation

computationally efficient.

8.6.3 Additions to Testing Methodology. The main addition to the testing

methodology is the inclusion of a full range of usability studies. This research per-

formed a small number of usability studies to get a general feel for the usability of the

intelligence. However, an inclusive, generic methodology should include a complete

usability study. Such a study should target a large subset of users that represent all

possible classes and levels of experience for the target system. These users should

use the implemented system to perform system operations both with the intelligence

active and without the intelligence active. Collection of data for this study should

be a combination of system collected data and user surveys.

8-6

Bibliography

1. High Performance Computing and Communications FY 1994 Blue Book. URL:
http://www.hpcc.gov/blue94/section.3.4.html: National Coordination Office
for High Performance Computing and Communications, 1994.

2. High Performance Computing and Communications FY 1995 Blue Book. URL:
http://www.hpcc.gov/blue95/section.2.5.html: National Coordination Office
for High Performance Computing and Communications, 1995.

3. High Performance Computing and Communications FY 1995 Implementation
Plan. URL: http://www.hpcc.gov/reports/index.html: National Coordination
Office for High Performance Computing and Communications, 1995.

4. SPARCworks/Visual User's Guide: Version 1.1. Mountain View, CA: Sun
Microsystems, Inc., 1995.

5. High Performance Computing and Communications FY 1994 Blue Book. URL:
http://www.hpcc.gov/reports/index.html: National Coordination Office for
High Performance Computing and Communications, 1996.

6. High Performance Computing and Communications FY 1996 Blue Book. URL:
http://www.hpcc.gov/blue96/section.2.4.html: National Coordination Office
for High Performance Computing and Communications, 1996.

7. The Netscape WWW Homepage. URL: http://home.netscape.com/: Netscape
Communications Corporation, 1996.

8. Aliferis, Constantin F. and Gregory F. Cooper. "A Structurally and Temporally
Extended Bayesian Belief Network Model: Definitions, Properties, and Model-
ing Techniques." In the Proceedings of the Twelfth Conference for Uncertainty
in Artificial Intelligence. 1996.

9. Allen, James. Natural Language Understanding. The Benjamin/Cummings
Publishing Company, Inc., 1995.

10. Ardissono, Liliana and Dario Sestero. "Using Dynamic User Models in the
Recognition of the Plans of the User," User Modeling and User Adapted Inter-
action, 5:157-190 (1996).

11. Avouris, Nicholas M. and Sandra Finotti. "User Interface Design to Expert
Systems Based on Hierarchical Spatial Representations," Expert Systems With
Applications, 6:109-118 (1993).

12. Baecker, Ronald M. and others. Readings in Human-Computer Interaction:
Toward the Year 2000, Second Edition. San Francisco, CA: Morgan Kaufmann
Publishers, Inc., 1995.

13. Banks, Darwyn 0. Acquiring Consistent Knowledge for Bayesian Forests.
MS thesis, Graduate School of Engineering, Air Force Institute of Technology,
Wright-Patterson AFB OH, 1995.

BIB-1

14. Bennasat, Izak and Peter Todd. "An experimental investigation of interface
design alternatives: icon vs. text and direct manipulation vs. menus," Interna-
tional Journal of Man-Machine Studies, 38:369-402 (1993).

15. Benyon, D. and D. Murray. "Adaptive systems: from intelligent tutoring to
autonomous agents," Knowledge-Based Systems, 6:197-219 (1993).

16. Benyon, David, et al. "Computer-aided Adaptation of User Interfaces," SIGCHI
Bulletin, 26(11):25-27 (1994).

17. Bernstein, Daniel J. Using Motif with C++. New York, NY: SIGS Books, 1995.

18. Borghetti, Brett, et al. "Inferencing Over Incomplete Solution Spaces with
Genetic Algorithms
for Probabilistic Reasoning." In M. Gasser (Ed.), Online Proceedings of the
1996 Midwest Artificial Intelligence and Cognitive Science Conference. URL
http://www.cs.indiana.edu/event/maics96/Proceedings/Borghetti. html. 1996.

19. Bos, Edwin, et al. "EDWARD: full integration of language and action in a
multimodal user interface," International Journal of Human-Computer Studies,
40:473-495 (1994).

20. Boutilier, Craig and others. "Context-Specific Independence in Bayesian Net-
works." In the Proceedings of the Twelfth Conference for Uncertainty in Artifi-
cial Intelligence. 1996.

21. Brown, Scott M., et al. "A Dynamic Bayesian Intelligent Interface Agent."
Submitted to 1997 Florida Artificial Intelligence Research Symposium. 1996.

22. Burnell, Lisa J. "Intelligent Software Maintenance," PC Al, July/August:16-21
(1996).

23. Carolis, Berardina De and Fiorella de Rosis. "Modelling Adaptive Interaction
of OPADE by Petri Nets," SIGCHI Bulletin, 26(2):48-52 (April 1994).

24. Cesta, Amedeo and Daniela DAloisi. "Building Interfaces as Personal Assis-
tants," SIGCHI Bulletin, 28(3):108-113 (1996).

25. Chappel, H., et al. "Engineering User Models to Enhance Multi-Modal Dia-
logue." In JA Larson and CA Unger, editors, Engineering for Human Computer
Interaction, Elsevier Science Publishers. 1992.

26. Charniak, Eugene. "Bayesian Networks without Tears," AI Magazine, Win-
ter:50-63 (1991).

27. Cohen, Philip R. "The Role of Natural Language in a Multimodal Interface." In
the Proceedings of the ACM Symposium on User Interface Software and Tech-
nology, UIST'92. 1992.

28. Cousins, Steve B., et al. CaBeN: A Collection of Algorithms for Belief Net-
works. Technical Report WUCS-91-25, Medical Informatics Computer Systems,

BIB-2

Department of Computer Systems, Washington University, St. Louis, Missouri,
1991.

29. Cox, Kevin and David Walker. User-Interface Design. New York: Prentice
Hall, 1993.

30. Donskoy, M. V. "An Architecture for Object Oriented User Interfaces for a
Model-Based Diagnostic System." In Lecture Notes in Computer Science, 4th
International Conference, EWHCI'94. 1994.

31. Friedman, Nir and Moises Goldszmidt. "Learning Bayesian Networks with Local
Structure." In the Proceedings of the Twelfth Conference for Uncertainty in
Artificial Intelligence. 1996.

32. Frohlich, Michael and Mattias Werner. The daVinci WWW Homepage. URL:
http://www.informatik.uni-bremen.de/ davinci/: University of Bremen, Ger-
many, 1996.

33. Gleason, Howard Terrance. Probabilistic Knowledge Base Validation. MS the-
sis, Graduate School of Engineering, Air Force Institute of Technology, Wright-
Patterson AFB OH, 1995.

34. Gonzalez, Avelino J. and Douglas D. Dankel. The Engineering of Knowledge-
Based Systems. Englewood Cliffs, NJ: Prentice Hall, 1993.

35. Harrington, Robert A., et al. "Development of an Intelligent User Interface
for a Generic Expert System." In M. Gasser (Ed.), Online Proceedings of the
1996 Midwest Artificial Intelligence and Cognitive Science Conference. URL
http://www.cs.indiana.edu/event/maics96/Proceedings/harrington.html. 1996.

36. Harrington, Robert A., et al. "GESIA: Uncertainty-Based Reasoning for a
Generic Expert System Intelligent User Interface." To appear in the Proceedings
of the 1996 International Conference on AI Tools. 1996.

37. Harrington, Robert A., et al. The PESKI Intelligent User Interface. Technical
Report AFIT/EN/TR96-03, Department of Electrical and Computer Engineer-
ing, Air Force Institute of Technology, Wright-Patterson AFB, OH, 1996.

38. Harrington, Robert A., et al. "Intelligent Interface Learning with Uncertainty."
Submitted to 1997 Florida Artificial Intelligence Research Symposium. 1996.

39. Harris, Mary Dee. Introduction to Natural Language Processing. Reston, Vig-
inia: Reston Publishing Company, 1985.

40. Hartrum, Thomas. Class handouts, CSCE 594, Software Analysis and Design.
Technical Report, Department of Electrical and Computer Engineering, Air
Force Institute of Technology, Wright-Patterson AFB, OH, 1995.

41. Hartson, H. Rex and Philip D. Gray. "Temporal Aspects of Tasks in the User
Action Notation," Human Computer Interaction, 7:1-45 (1992).

BIB-3

42. Hayes-Roth, Barbara. "An architecture for adaptive intelligent systems," Arti-
ficial Intelligence, 72:329-365 (1995).

43. Heckerman, David. A Tutorial on Learning With Bayesian Networks. Technical
Report TR MSR-TR-95-06, Microsoft Research, Advance Technology Division,
Microsoft Corporation, 1995.

44. Hewitt, J. A. and P. G. R. Halford. "Design of an intelligent interface to
standard PC applications which maximizes the ability of the disabled user,"
Knowledge-Based Systems, 6:24-29 (1993).

45. Hook, Kristina. Adapting to the User's Task. Technical Report R95008, De-
partment of Computer and Systems Sciences, Stockholm University, Stockholm,
Sweden, 1995.

46. Hook, Kristina, et al. "Inferring Complex Plans." In W. D. Gray, W. E. Hefley,
and D. Murray, editors, Proceedings of the International Workshop on Intelli-
gent User Interfaces. 1993.

47. Kanko, Mark. Class handouts, CSCE 595, Software Systems Engineering.
Technical Report, Department of Electrical and Computer Engineering, Air
Force Institute of Technology, Wright-Patterson AFB, OH, 1996.

48. Kantorowitz, Eliezer and Oded Sudarsky. "The Adaptable User Interface,"
Communications of the ACM, 11 (32):1352-1358 (November 1989).

49. Karlgren, Jussi, et al. The Glass Box User Model Filtering. Technical Re-
port R94014, Departments of Computer and Systems Sciences, Computational
Linguistics, and Psychology, Stockholm University, Stockholm, Sweden, 1994.

50. Keller, Brian J. A Practical Guide to X Window Programming. Boca Raton,
FL: CRC Press, 1990.

51. Kuhme, T. "User-centered approach to adaptive interfaces," Knowledge-Based
Systems, 6(4):239-248 (1993).

52. Kyburg, Jr., Henry E. "Uncertain Inferences and Uncertain Conclusions." In the
Proceedings of the Twelfth Conference for Uncertainty in Artificial Intelligence.
1996.

53. Landay, James A. and Brad A. Myers. "Interactive Sketching the Early Stages of
User Interface Design." In Proceedings of CHI'95: Human Factors in Computing
Systems. 1995.

54. Landay, James A. and Brad A. Myers. "Sketching Storyboards to Illustrate
Interface Behaviors." In CHI'96 Conference Companion: Human Factors in
Computing Systems. 1996.

55. Lee, Geoff. Object-Oriented GUI Application Development. NJ: PTR Prentice
Hall, 1993.

BIB-4

56. Luo, Ping, et al. "Management of Interface Design in HUMANOID." In the
Proceedings of the ACM Conference on Human Factors in Computing Systems,
INTERCHI '93. 1993.

57. Mason, Cindy L. "An Intelligent Assistant for Nuclear Test Ban Treaty Verifi-
cation," IEEE Expert: Intelligent Systems and Their Applications, 10(6):42-49
(1995).

58. Maulsby, David. Inductive Task Modeling for User Interface Customization.
Technical Report Technical Report, Section on Medical Informatics Stanford
University Stanford, CA, 1996.

59. Meyer, Beth. "Retail User Assistant: Evaluation of a User-Adapted Perfor-
mance Support System." In Lecture Notes in Computer Science, 4th Interna-
tional Conference, EWHCI'94. 1994.

60. Miller, Christopher A. and Raymond Larson. "An Explanatory and Argumen-
tative Interface for a Model-Based Diagnostic System." Proceedings of UIST'92.
1992.

61. Nakakoji, Kumiyo and Gerhard Fischer. "Intertwining knowledge delivery and
elicitation: a process model for human-computer collaboration," Knowledge-
Based Systems, 8(2-3):94-104 (1995).

62. Neilson, Irene and John Lee. "Conversations with graphics: implications for
the design of natural language/graphics interfaces," International Journal of
Human-Computer Studies, 40:509-541 (1994).

63. Ngo, L. and P. Haddawy. "Probabilistic Logic Programming and Bayesian
Networks." In the Proceedings of Asian Computing Science Conference, LNCS.
1995.

64. Nicholson, A. E. and J. M. Brady. "Dynamic Belief Networks for Discrete Mon-
itoring," IEEE Transactions on Systems, Man, and Cybernetics, 24(11):1593-
1610 (1994).

65. Nigay, Laurence and Joelle Coutaz. "A Generic Platform for Addressing the
Multimodal Challenge." In Human Factors in Computing System Proceedings,
Annual Conference Series, SIGCHI'95. 1995.

66. Nitsche-Ruhland, Doris. "A Knowledge-Based Authoring System for
Hypermedia-Based Learning Environments." In Lecture Notes in Computer Sci-
ence, 4th International Conference, EWHCI'94. 1994.

67. Oppermann, Reinhard. "Adaptively supported adaptivity," International Jour-
nal of Human-Computer Studies, 40:455-472 (1994).

68. Pearl, Judea. Probabilistic Reasoning in Intelligent Systems: Networks of Plau-
sible Inference. San Mateo, CA: Morgan Kaufmann, 1988.

69. Puerta, A. R. "The Study of Models of Intelligent Interfaces." In the Proceedings
of the 1993 International Workshop on Intelligent User Interfaces. 1993.

BIB-5

70. Rook, Frederick W. and Michael L. Donnell. "Human Cognition and the
Expert System Interface: Mental Models and Inference Explanations," IEEE
Transactions on Systems, Man, and Cybernetics, 23(6):1649-1661 (Novem-
ber/December 1993).

71. Ruckert, Carsten and Stephen Klein. "Empirical Study on the Use of a
Knowledge-based System for Selecting Standard Engineering Components." In
Lecture Notes in Computer Science, 4th International Conference, EWHCI'94.
1994.

72. Rumbaugh, James and others. Object-Oriented Modeling and Design. Engle-
wood Cliffs, NJ: Prentice Hall, 1991.

73. Santhanam, Radhika and Susan Wiedenbeck. "Neither novice nor expert: the
discretionary user of software," International Journal of Man-Machine Studies,
38:201-229 (1993).

74. Santos, Jr., Eugene. A Fully Integrated Probabilistic Framework for Expert Sys-
tem Development. Technical Report, Department of Electrical and Computer
Engineering, Air Force Institute of Technology, Wright-Patterson AFB, OH,
1993.

75. Santos, Jr., Eugene and Darwyn 0. Banks. A Probabilistic Framework for Rep-
resenting Uncertainty. Technical Report AFIT/EN, Department of Electrical
and Computer Engineering, Air Force Institute of Technology, Wright-Patterson
AFB, OH, 1995.

76. Schneiderman, Ben. Designing the User Interface: Strategies for Effective
Human-Computer Interaction (Second Edition). Reading, MA: Addison-Wesley
Publishing Company, 1992.

77. Stock, Oliviero. "Natural Language in Multimodal Human-Computer Inter-
faces," IEEE Expert: Intelligent Systems and Their Applications, 9(2):40-44
(1994).

78. Stock, Oliviero and others. "AlFresco: Enjoying the Combination of Natural
Language Processing and Hypermedia for Information Exploration." In Mark
T Maybury, editor, Intelligent Multimedia Interfaces, The MIT Press. 1993.

79. Stock, Oliviero, et al. "Human-Computer Interaction through Natural Lan-
guage and Hypermedia in AlFresco," SIGCHI Bulletin, 28(3):102-107 (1996).

80. Sukaviriya, P. "From user interface design to the support of intelligent and
adaptive interfaces: an overhaul of user interface software," Knowledge-Based
Systems, 6:220-229 (1993).

81. Terveen, Loren G. "Overview of human-computer collaboration," Knowledge-
Based Systems, 8(2-3):67-81 (1995).

82. Thomas, C. G. "Design, implementation and evaluation of an adaptive user
interface," Knowledge-Based Systems, 6:230-238 (1993).

BIB-6

83. Treu, Siegfried. User Interface Evaluation: A Structured Approach. New York,
NY: Plenum Press, 1994.

84. Trumbly, James E. "Productivity gains via an adaptive user interface: an
empirical analysis," International Journal of Human-Computer Studies, 40:63-
81 (1994).

85. van Zuylen, H. J. "From scientific computation to decision support,"
Knowledge-Based Systems, 6(1) (1993).

86. Vaubel, Kent P. and Charles F. Gettys. "Inferring User Expertise for Adaptive
Interfaces," Human Computer Interaction, 5:95-117 (1990).

87. Waern, Annika. "Plan Inference for a Purpose." In A. Kobsa and D. Litman, ed-
itors, Proceedings of the 4th International Conference on User Modeling. 1995.

88. Watson, Mark. Portable GUI Development with C++. NY: McGraw-Hill, Inc,
1993.

89. Woods, D. D. "Price of flexibility in intelligent interfaces," Knowledge-Based
Systems, 6:189-196 (1993).

BIB-7

Appendix A. Basic Instructions for Application Access

A.1 Access to PESKI

The current version of PESKI is found at rharring/Sparks/PESKIALPHA

on the AFIT Hawkeye network. Just type peski20 at the command line to exe-

cute PESKI. PESKI help utilities includes explanation of all the interface buttons

and choices, explanation of the basic PESKI functions, system programmer infor-

mation, and tutorials for using some of PESKI's features. Help in using PESKI

is obtained by choosing the Help menu choice of any PESKI menu. This action

will start a Netscape [7] session to view the PESKI help in HTML. These HTML

documents can be found offline from PESKI in the PESKIHelpFiles directory

at rharring/Sparks/PESKIALPHA/ on the AFIT Hawkeye network. Any HTML

viewer, such as Netscape, can be used to access the PESKI help information.

A.2 Access to daVinci

daVinci is a versatile graph drawing tool that provides an easy to use visual-

ization environment. Information and downloading of the tool can be accomplished

by accessing the daVinci World Wide Web (WWW) page [32]. A version of daVinci

can be found at rharring/Sparks/PESKIALPHA on the AFIT Hawkeye network.

Just enter the daVinci/daVinciV2.0/ directory and type daVinci at the command

line to execute the application. Also, some daVinci documentation is found at the

same location in the /docs directory on the AFIT Hawkeye network in HTML for-

mat. Any HTML viewer, such as Netscape [7], can be used to access the daVinci

help information.

A.3 Access to Netscape

Access to both PESKI and daVinci help utilities requires the use of an HTML

viewer. The current viewer used for both application is Netscape [7]. Netscape can

A-1

be found on all AFIT networks, so see the appropriate network administrator for

access information.

A-2

Appendix B. Physical Work Requirements

Symbol Key

mm = mousemovement

sc = singlemouseclick

dc = doublemouseclick

hk = hotkeycommand(< entrl > andaletter)

1. Physical work requirements for startup choices without IIA - Method 1

(a) Load BKB file = 4 mm, 2 sc, 2 dc

(b) Choose the system function from the main window = 1 mm, lsc

(c) Choose the communication mode from the main window = 1 mm, lsc

(d) Execute the choice = 1 mm, 1 sc

(e) Total work for Method 1 = 7 mm, 5 sc, 2 dc

2. Physical work requirements for startup choices without IIA - Method 2

(a) Load BKB file = 4 mm, 2 sc, 2 dc

(b) Choose communication mode from main window menu = 1 mm, 2sc

(c) Choose the system function from the main window = 1 mm, 2sc

(d) Total work for Method 2 = 6 mm, 6 sc, 2 dc

3. Physical work requirements for startup choices without IIA - Method 3

(a) Load BKB file = 2 mm, 2 dc, lhk

(b) Choose the system function from the main window = 1 mm, lsc

(c) Choose communication mode from main window = 1 mm, lsc

(d) Execute the choice = 1 mm, 1 sc

(e) Total work for Method 3 = 5 mm, 3 sc, 2 dc, lhk

B-1

4. Physical work requirements for startup choices without IIA - Method 4

(a) Load BKB file = 2 mm, 2 dc, lhk

(b) Choose the communication mode from the main window menu = 1 mm,

2sc

(c) Choose the system function from the main window = 1 mm, 2sc

(d) Total work for Method 4 = 4 mm, 4 sc, 2 dc, lhk

5. Physical work requirements for startup choices with IIA - Correct Suggestion

(a) Accept suggestion = 1 mm, lsc

(b) Total work = 1 mm, lsc

6. Physical work requirements for startup choices with IIA - Wrong Suggestion

(a) Reject suggestion = 1 mm, lsc

(b) Requirements from one of the four manual methods

7. Physical Work Totals

(a) Total work with Method 1 = 8 mm, 6 sc, 2 dc

(b) Total work with Method 2 = 7 mm, 7 sc, 2 dc

(c) Total work with Method 3 = 6 mm, 4 sc, 2 dc, lhk

(d) Total work with Method 4 = 5 mm, 5 sc, 2 dc, lhk

(e) Total work with Correct Suggestion = 1 mm, 1 sc

(f) Total work with Wrong Suggestion = varies

B-2

Appendix C. Survey Used for User Acceptance Testing

PESKI Graphical User Interface Evaluation Sheet

INSTRUCTIONS

1. Please follow the directions on this sheet. You will be answering questions in

between steps so please, do not skip ahead at any time.

2. A test proctor will guide you through this process, but the proctor is not per-

mitted to do or say anything that might alter your responses to the questions.

3. Remember, you are helping to judge the usability of PESKI's user interface,

NOT THE FUNCTIONALITY OF THE SYSTEM. Try to concentrate on the

interactive abilities of the user interface and answer the questions fairly.

4. When answering the questions, please be honest. Negative, positive, or neutral

answers are all perfectly acceptable.

5. This survey should only take you about 10 minutes. Thanks for making an

important contribution to my research!

Name:

Title:

E-Mail:

Please rate your expertise with using computer applications?

(Answer 1 thru 10; 1 is novice and 10 is expert)

QUESTIONS

1. Start PESKI. The command is peski20.

(a) How would you rate the speed of the system's startup?

C-1

(Answer 1 thru 10; 1 is very slow and 10 is very fast)

(b) List any miscellaneous comments you may have. If you don't have any,

leave this question blank.

2. Delete the existing user logon called Dummy.

(a) How confusing is this task to perform?

(Answer 1 thru 10; 1 is very confusing and 10 is very clear)

(b) How would you rate the speed of the system when its deleting the logon?

(Answer 1 thru 10; 1 is very slow and 10 is very fast)

(c) List any miscellaneous comments you may have. If you don't have any,

leave

3. Create a new user logon called NewUser. Set this user's class to be application

user.

(a) How confusing is this task to perform?

(Answer 1 thru 10; 1 is very confusing and 10 is very clear)

(b) How would you rate the speed of the system when its creating the logon?

(Answer 1 thru 10; 1 is very slow and 10 is very fast)

(c) List any miscellaneous comments you may have. If you don't have any,

leave

4. Login to the system with the logon NewUser.

(a) How confusing is this task to perform?

(Answer 1 thru 10; 1 is very confusing and 10 is very clear)

(b) How would you rate the speed of the system when its logging in?

C-2

(Answer 1 thru 10; 1 is very slow and 10 is very fast)

(c) List any miscellaneous comments you may have. If you don't have any,

leave

5. You will now receive two suggestions from the interface. Reject the suggestions.

(a) How confusing is this task to perform?

(Answer 1 thru 10; 1 is very confusing and 10 is very clear)

(b) How would you rate the speed of the system when rejecting the sugges-

tions?

(Answer 1 thru 10; 1 is very slow and 10 is very fast)

(c) List any miscellaneous comments you may have. If you don't have any,

leave

6. You will now receive two more suggestions from the user interface. Reject those

suggestions as well.

(a) How confusing is this task to perform?

(Answer 1 thru 10; 1 is very confusing and 10 is very clear)

(b) How would you rate the speed of the system when rejecting the sugges-

tions?

(Answer 1 thru 10; 1 is very slow and 10 is very fast)

(c) List any miscellaneous comments you may have. If you don't have any,

leave

7. Load a BKB called rharring/Sparks/PESKIALPHA/BKBs/goldfish.bkb.

(a) How confusing is this task to perform?

(Answer 1 thru 10; 1 is very confusing and 10 is very clear)

(b) How would you rate the speed of the system to load the BKB?

C-3

(Answer 1 thru 10; 1 is very slow and 10 is very fast)

(c) List any miscellaneous comments you may have. If you don't have any,

leave

8. Close the BKB load window.

9. Start the Inferencing function in Structured Text communication mode.

(a) How confusing is this task to perform?

(Answer 1 thru 10; 1 is very confusing and 10 is very clear)

(b) How would you rate the speed of the system to start the inferencing task?

(Answer 1 thru 10; 1 is very slow and 10 is very fast)

(c) List any miscellaneous comments you may have. If you don't have any,

leave

10. Close the Inferencing window.

(a) How confusing is this task to perform?

(Answer 1 thru 10; 1 is very confusing and 10 is very clear)

(b) List any miscellaneous comments you may have. If you don't have any,

leave

11. Exit PESKI.

(a) How confusing is this task to perform?

(Answer 1 thru 10; 1 is very confusing and 10 is very clear)

(b) How would you rate the speed of the system to exit?

(Answer 1 thru 10; 1 is very slow and 10 is very fast)

(c) List any miscellaneous comments you may have. If you don't have any,

leave

12. Start PESKI. The command is peski20.

(a) How would you rate the speed of the system's startup?

C-4

(Answer 1 thru 10; 1 is very slow and 10 is very fast)

(b) List any miscellaneous comments you may have. If you don't have any,

leave

13. Login to the system with the logon NewUser.

(a) How confusing is this task to perform?

(Answer 1 thru 10; 1 is very confusing and 10 is very clear)

(b) How would you rate the speed of the system when its logging in?

(Answer 1 thru 10; 1 is very slow and 10 is very fast)

(c) List any miscellaneous comments you may have. If you don't have any,

leave

14. Accept suggestion to load iharring/Sparks/PESKIALPHA/BKBs/goldfish.bkb.

(a) How confusing is this task to perform?

(Answer 1 thru 10; 1 is very confusing and 10 is very clear)

(b) How would you rate the speed of the system to load the BKB automati-

cally?

(Answer 1 thru 10; 1 is very slow and 10 is very fast)

(c) How beneficial is the intelligent assistant's suggestion?

(Answer 1 thru 10; 1 is useless and 10 is very useful)

(d) List any miscellaneous comments you may have. If you don't have any,

leave

15. Accept suggestion to open Inference function in text mode.

(a) How confusing is this task to perform?

(Answer 1 thru 10; 1 is very confusing and 10 is very clear)

(b) How would you rate the speed of the system to start the Inferencing

function

C-5

(Answer 1 thru 10; 1 is very slow and 10 is very fast)

(c) How beneficial is the intelligent assistant's suggestion?

(Answer 1 thru 10; 1 is useless and 10 is very useful)

(d) List any miscellaneous comments you may have. If you don't have any,

leave

16. Close the Inferencing window.

(a) How confusing is this task to perform?

(Answer 1 thru 10; 1 is very confusing and 10 is very clear)

(b) List any miscellaneous comments you may have. If you don't have any,

leave

17. Exit PESKI.

(a) How confusing is this task to perform?

(Answer 1 thru 10; 1 is very confusing and 10 is very clear)

(b) How would you rate the speed of the system to exit?

(Answer 1 thru 10; 1 is very slow and 10 is very fast)

(c) List any miscellaneous comments you may have. If you don't have any,

leave

18. Please list any other comments you have.

Thanks Again for Your Help!

C-6

Appendix D. User Acceptance of the IIA

1. Average Computer Experience; scale is from 1 (novice) to 10 (expert)

(a) Experience = 8.20

2. Average Opinion on Timeliness; scale is from 1 (very slow) to 10 (very fast)

(a) Peski startup = 7.70

(b) Login to system = 7.60

(c) Loading an existing BKB manually = 6.80

(d) Starting the inference window in structured text communication mode

manually = 7.40

(e) Loading an existing BKB through an IIA suggestion = 6.20

(f) Starting the inference window in structured text communication mode

through an IIA suggestion = 6.20

3. Average Opinion on Complexity; scale is from 1 (very confusing) to 10 (very

clear)

(a) Login to system = 7.00

(b) Loading an existing BKB manually = 6.60

(c) Starting the inference window in structured text communication mode

manually = 8.60

(d) Loading an existing BKB through an IIA suggestion = 8.00

(e) Starting the inference window in structured text communication mode

through an IIA suggestion = 6.60

4. Average User Opinion on Usefulness; scale is from 1 (useless) to 10 (very useful)

D-1

(a) Loading an existing BKB through an IIA suggestion = 7.20

(b) Starting the inference window in structured text communication mode

through an IIA suggestion = 7.40

D-2

Appendix E. Responsiveness of the IIA

1. System startup from command line

(a) Time using the IIA = 3.33 sec

(b) Time without IIA = Fraction of a sec

2. User login

(a) Time using the IIA = 6.89 sec

(b) Time without IIA = Not Applicable

3. Start the inference engine window for text communication

(a) Time using the IIA = 14.92 sec

(b) Time without IIA = Fraction of a sec

4. Start the inference engine window for graphical communication

(a) Time using the IIA = 18.50 sec

(b) Time without IIA = 6.76 sec

5. Start the knowledge acquisition window for text communication

(a) Time using the IIA = 14.83 sec

(b) Time without IIA = Fraction of a sec

6. Start the knowledge acquisition window for graphical communication

(a) Time using the IIA = 18.32 sec

(b) Time without IIA = 6.73 sec

7. Start the edit supports window for text communication

(a) Time using the IIA = 14.76 sec

(b) Time without IIA = Fraction of a sec

E-1

8. Start the edit supports window for graphical communication

(a) Time using the IIA = 18.34 sec

(b) Time without IIA = 6.63 sec

9. Start the verification and validation window for text communication

(a) Time using the IIA = 14.72 sec

(b) Time without IIA = Fraction of a sec

10. Start the verification and validation window for

(a) Time using the IIA = 18.45 sec

(b) Time without IIA = 6.68 sec

11. Start the data mining window for text communication

(a) Time using the IIA = 14.33 sec

(b) Time without IIA = Fraction of a sec

12. Start the data mining window for graphical communication

(a) Time using the IIA = 18.28 sec

(b) Time without IIA = 6.75 sec

13. Start the knowledge viewing window for graphical communication

(a) Time using the IIA = 12.04 sec

(b) Time without IIA = 6.48 sec

14. Start load for an existing BKB file

(a) Time using the IIA = 8.21 sec

(b) Time without IIA = Fraction of a sec

15. Start load for a new BKB file (less than 5 existing BKB files)

E-2

(a) Time using the IIA = 10.48 sec

(b) Time without IIA = N/A

16. Start load for a new BKB file (greater than or equal to 5 existing BKB files)

(a) Time using the IIA = 13.33 sec

(b) Time without IIA = N/A

17. Reject both suggestions; load full5.bkb and start inferencing window in text

communication mode

(a) Time = 40.38 sec

18. Accept both suggestions to load full5.bkb and start inferencing window in text

communication mode

(a) Time = 31.25 sec

E-3

Vita

Ist Lt Robert A. Harrington , al-

though he calls Florida home. He graduated from Troy State University in 1993

with a Bachelors of Science in Computer Science. His 11 year career in the United

States Air Force include Engineering Assistant, 834th Civil Engineering Squadron,

Chief of Construction Management, 354th Tactical Fighter Wing(Operation Desert

Shield and Storm), Satellite Software Test Analyst, 50th Space Systems Squadron,

and Executive Officer, 50th Space Systems Squadron and 50th Logistics Support

Squadron. Lt Harrington holds the John Levitow Award and is twice named Officer

of the Quarter for the 50th Logistics Group.

Vr1

Vi'TA-I

REPORT DOCUMENTATION PAGE Form Approved

I OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate tor Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

2 Dec 96 Master's Thesis, 2 Dec 96
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Utilizing Bayesian Techniques for User Interface Intelligence

6. AUTHOR(S)

1st Lt Robert A. Harrington

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Department of Electrical and Computer Engineering REPORT NUMBER

Air Force Institute of Technology
Wright-Patterson AFB, OH

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /MONITORING
Dr Abraham Waksman AGENCY REPORT NUMBER

AFOSR/NM AFOSR#94006
110 Duncan Ave
Bolling AFB, DC 20332 (202)-404-7496

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (Maximum 200 word) .
The purpose of this research is to study the injection of an intelligent agent into modem user
interface technology. This agent is intended to manage the complex interactions between the
software system and the user, thus making the complexities transparent to the user. The
background study will show that while interesting and promising research exists in the domain of
intelligent interface agents, very little research has been published that indicates true success in
representing the uncertainty involved in predicting user intent.

The interface agent architecture presented in this thesis will offer one solution for solving the
problem using a newly developed Bayesian-based agent called the Intelligent Interface Agent (IIA).
The proof of concept of this architecture has been implemented in an actual expert system, and this

thesis presents the results of the implementation. The conclusions of this thesis will show the
viability of this new agent architecture, as well as promising future research in examination of
cognitive models, development of an intelligent interface agent interaction language, expansion of
meta-level interface learning, and refinement of the PESKI user interface.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Intelligent User Interface, Generic Expert System, 93

Uncertainty-based Reasoning, Bayesian Network. 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Unclass Unclass Unclass

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

GENERAL INSTRUCTIONS FOR COMPLETING SF 298

The Report Documentation Page (RDP) is used in announcing and cataloging reports. It is important
that this information be consistent with the rest of the report, particularly the cover and title page.
Instructions for filling in each block of the form follow. It is important to stay within the lines to meet
optical scanning requirements.

Block 1. Agency Use Only (Leave blank). Block 12a. Distribution/Availability Statement.
Denotes public availability or limitations. Cite any

Block 2. Report Date. Full publication date availability to the public. Enter additional
including day, month, and year, if available (e.g. 1 limitations or special markings in all capitals (e.g.
Jan 88). Must cite at least the year. NOFORN, REL, ITAR).

Block 3. Type of Report and Dates Covered. DOD - See DoDD 5230.24, "Distribution
State whether report is interim, final, etc. If S e e o n Technical
applicable, enter inclusive report dates (e.g. 10 Statmentso cJun8- 30Jun 8).Documents." 1

Jun 87 - 30 Jun 88). DOE - See authorities.

Block4. Title and Subtitle. Atitle istaken from NASA - See Handbook NHB 2200.2.
the part of the report that provides the most NTIS - Leave blank.
meaningful and complete information. When a
report is prepared in more than one volume, Block 12b. Distribution Code.
repeat the primary title, add volume number, and
include subtitle for the specific volume. On
classified documents enter the title classification DOD - Eae blank.in paetee.DOE -Enter DOE distribution categories

parentheses. from the Standard Distribution for

Block S. Funding Numbers. To include contract Unclassified Scientific and Technical

and grant numbers; may include program Reports.
element number(s), project number(s), task NASA - Leave blank.

number(s), and work unit number(s). Use the NTIS - Leave blank.

following labels:

C - Contract PR - Project Block 13. Abstract. Include a brief (Maximum
G - Grant TA - Task 200 words) factual summary of the most
PE - Program WU - Work Unit significant information contained in the report.

Element Accession No.

Block 6. Author(s). Name(s) of person(s) Block 14. Subiect Terms. Keywords or phrases
responsible for writing the report, performing identifying major subjects in the report.
the research, or credited with the content of the
report. If editor or compiler, this should follow
the name(s). Block 15. Number of Pages. Enter the total

number of pages.
Block7. Performing Organization Name(s) and
Address(es). Self-explanatory. Block 16. Price Code. Enter appropriate price

Block 8. Performing Organization Report code (NTIS only).
Number. Enter the unique alphanumeric report
number(s) assigned by the organization Blocks 17.- 19. Security Classifications. Self-

explanatory. Enter U.S. Security Classification in
Block 9. Sponsoring/Monitoring Agency Name(s) accordance with U.S. Security Regulations (i.e.,
and Address(es). Self-explanatory. UNCLASSIFIED). If form contains classified

information, stamp classification on the top and
Block 10. Sponsoring/Monitoring Agency bottom of the page.
Report Number. (If known)

Block 11. Supplementary Notes. Enter Block 20. Limitation of Abstract. This block must
information not included elsewhere such as: be completed to assign a limitation to the
Prepared in cooperation with...; Trans. of...; To be abstract. Enter either UL (unlimited) or SAR (same
published in.... When a report is revised, include as report). An entry in this block is necessary if
a statement whether the new report supersedes the abstract is to be limited. If blank, the abstract
or supplements the older report. is assumed to be unlimited.

*U.S.GPO:1 993-0-336-043 Standard Form 298 Back (Rev. 2-89)

